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FOREWORD 

Consensus Documents contain information for use during the regulatory assessment of a particular 

product. In the area of plant biosafety, these are being published on information on the biology of certain 

plant species, selected traits that may be introduced into plant species, and biosafety issues arising from 

certain general types of modifications made to plants. 

 

This document addresses the biology of Atlantic salmon (Salmo salar).  

 

Finland, Norway and the United States served as the co-leads in the preparation of this document, and 

the draft has been revised based on the input from other member countries and stakeholders. 

 

This document is published under the responsibility of the Joint Meeting of the Chemicals Committee 

and the Working Party on Chemicals, Pesticides and Biotechnology. 
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PREAMBLE 

 
The environmental risk/safety of transgenic organisms are normally based on the information on the 

characteristics of the host organism, the introduced traits, the environment into which the organism is 

introduced, the interaction between these, and the intended application. The OECD’s Working Group on 

Harmonisation of Regulatory Oversight in Biotechnology decided at its first session, in June 1995, to focus 

its  work  on  identifying  parts  of  this  information,  which  could  be  commonly  used  in  countries  for 

environmental safety/risk assessment to encourage information sharing and prevent duplication of effort 

among countries. Biosafety Consensus Documents are one of the major outputs of its work. 

Biosafety Consensus Documents are intended to be a “snapshot” of current information on a 

specific host organism or trait, for use during regulatory assessments. They are not intended to be a 

comprehensive source of information on everything that is known about a specific host or trait; but they do 

address the key or core set of issues that member countries believe are relevant to risk/safety assessment. 

This information is said to be mutually acceptable among member countries.  

To date, 54 Biosafety Consensus Documents have been published. They include documents which 

address the biology of crops, trees and micro-organisms as well as those which address specific traits which 

are used in transgenic crops. This is the first Biosafety Consensus Document to specifically address an 

animal other than a micro-organism, in this case a commonly cultured, domesticated fish that is reared for 

food production, Atlantic salmon, but which also occurs in the wild in undomesticated form, often in the 

very same geographical region. Thus in this document the biology and ecology of wild Atlantic salmon are 

described in addition to that of the domesticated form.  Currently used production and rearing practices are 

also described at length for domesticated Atlantic salmon because these practices may influence the ability 

of, and locations where, wild and domesticated forms of Atlantic salmon might interact in the environment 

and the types of interactions that may occur if they co-occur.  This information is intended to benefit 

potential risk assessors that may need to consider these potential interactions and their effects, and in 

assessing the risks that they might pose.  

In reading the Biosafety Consensus Documents, it may be useful to consult two additional texts. 

The first, entitled "An Introduction to the Biosafety Consensus Document of OECD’s Working Group for 

Harmonisation in Biotechnology" explains the purpose of the Biosafety Consensus Documents and how 

they are relevant to risk/safety assessment. The second text is "Points to Consider for Consensus 

Documents on the Biology of Cultivated Plants". Although this document is specifically for cultivated 

plants, it contains a structured checklist of “points to consider” for authors when drafting or for those 

reviewing a Consensus Document the may relevance to the biology of domesticated animals 

used in agriculture. Amongst other things, this text describes how each point is relevant to risk/safety 

assessment. 

The Biosafety Consensus Documents are of value to applicants for commercial uses of transgenic 

organisms, regulators in national authorities as well as the wider scientific community. The Consensus 

Documents are not intended to be a substitute for a risk/ safety assessment, because they address 

only a part of the necessary information. Nevertheless, they should make an important contribution to 

environmental risk/ safety assessment. 

As each of the documents  may be  updated  in  the  future  as  new  knowledge  becomes  available,  

users  of  Consensus Documents are encouraged to provide any information or opinions regarding the 

contents of this document or indeed, OECD’s other harmonisation activities. 
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PART I – BIOLOGY AND ECOLOGY OF WILD ATLANTIC SALMON 

1. Classification and nomenclature  

1. Scientific name of Atlantic salmon: Salmo salar LINNAEUS, 1758 

English: Atlantic salmon 

French: Saumon atlantique 

Spanish: Salmón Atlántico 

Russian: Semga 

German: Atlantischer Lachs, Salm 

Phylum: Chordata 

 Class: Osteichthyes (bony fishes) 

 Order: Salmoniformes 

 Family:  Salmonidae (Salmon and trout) 

 Subfamily: Salmoninae 

 Species: Salmo salar Linneaus 

2. Atlantic salmon belongs to the family Salmonidae (Teleosts) (Nelson, 1984). The family 

comprises seven genera: 

a. Salmo (includes Salmo salar – Atlantic salmon and Salmo trutta – brown trout and other endemic 

trout species) 

b. Hucho (taimen) 

c. Oncorhynchus (Pacific salmon) 

d. Salvelinus (charr) 

e. Salmothymus (endemic Balkan/Adriatic) 

f. Brachymystax (lenok) 

g. Salvethymus (S. svetovidovi) 

3. The most closely related species to Atlantic salmon is the brown trout, Salmo trutta. Low rates of 

hybridisation between the two species are common in the wild throughout Europe, where they are native 

(Youngson et al., 1993); the F1 generation can be fertile. Brown trout is not native to North America and 

where it has been introduced it is known to hybridise with Atlantic salmon (Verspoor, 1988a). 

4. Atlantic salmon occurs naturally only in the northern hemisphere and can be divided genetically 

into two major lineages, a North American (west-Atlantic race) and a European. Both the North American 

and European lineages again can be separated into smaller regional groupings. For example, in North 

America, there is regional distinction among the populations of the Gulf of Maine, Outer Bay of Fundy, 

Inner Bay of Fundy, Labrador/Ungava, Gulf of St. Lawrence, Southern Uplands of Nova Scotia and 

Newfoundland (excluding Gulf Rivers; Verspoor, 2005). In Europe, there is a major division between 
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Atlantic salmon of the Baltic and other European populations, as well as a division between the East-

Atlantic and North-Atlantic in the Barents Sea region. 

 Atlantic salmon is a genetically substructured species, even at the inter- and intra-watershed 

scales. 

 Genetic differentiation is based on homing to natal rivers (isolation of populations). 

 Genetic differences have been demonstrated between populations in protein-coding genes, 

nuclear and mitochondrial DNA markers and genetically based performance traits. 

Genetic markers: 

5. Identification of Atlantic salmon can be made through the use of genetic markers: chromosome 

numbers, allozymes, DNA analyses (see part III). 

Table 1. Terminology: Stages in the life cycle of Atlantic salmon 

Stage Definition 

Alevin Hatched fish still dependent on the yolk sac nutrition 

Fry Short transitional stage where the fish emerge from the redd and start to feed exogenously 

and disperse 

Parr 

Precocious parr 

Stage between full absorption of the yolk sac and smoltification 

Sexually mature parr (mostly males) 

Smolt Stage when seaward (landlocked: lakeward) migration occurs 

Post-smolt Stage from departure from the river (usually in spring / early summer) to the end of the first 

winter in the sea (sea-winter) or lake 

Adult 

Grilse (1SW) 

MSW 

Fish after the end of the first winter in the sea / Mature fish which returns to river to spawn 

A fish that returns to breed after one sea-winter 

A fish that returns to breed after multiple sea-winters 

Kelt Adult fish after spawning (spent), until it reaches the sea 

2. Life history and characterisation  

2.1. Characterisation 

6. Atlantic salmon is anadromous typically: the young migrate from the river to the sea for feeding 

and at sexual maturation return to their natal river to spawn as adults (Figure 1). There are, however, 

populations, particularly in North America, but also in Northern Europe that complete their entire life cycle 

in freshwater and are known as landlocked. Freshwater resident salmon populations are more often 

separated by some geographical barrier from anadromous salmon populations (Klemetsen et al., 2003; 

Sandlund et al., 2014), but they also exist in sympatry with anadromous salmon in North America 

(Hutchings and Myers, 1985; Verspoor and Cole, 1989). Landlocked populations generally have lower 

genetic variation within populations, but larger genetic differences between populations, compared to 

anadromous populations (Bourret et al., 2013a; Sandlund et al., 2014). This is because of lower effective 

population size in some populations, and a lack of gene flow between populations because of geographical 

barriers. Resident salmon populations in sympatry with anadromous populations have been shown to be 

genetically different from anadromous populations in some watersheds but not in others (Adams 

et al., 2016). 
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Figure 1. Schematic outline of the anadromous Atlantic salmon life cycle 

 Source: courtesy of Audun Rikardsen 

 

7. Atlantic salmon requires a freshwater environment for spawning and the development of the 

early life stages. Smolts leave the rivers in spring and/or early summer. As they prepare to do so, they 

undergo physiological (e.g. increase Na
+
K

+
 ATPase production), morphological (e.g. become more 

streamlined and take on a silvery body colouration) and behavioural changes for salt water. (Some 

landlocked populations may have abandoned key elements of the parr-smolt transformation associated with 

marine life – Nilsen et al., 2003).  

8. The main feeding-grounds of anadromous Atlantic salmon are the Northern Atlantic, with 

European populations being found principally on the eastern side and North American populations on the 

western side. However, the two groups frequently overlap off Greenland. Baltic populations restrict their 

migrations to the Baltic Sea. 

9. Once the returning salmon have entered the river, they migrate upstream until a suitable 

spawning site is reached. Their homing instinct brings the salmon back not only to their natal river, but 

also potentially to the same river section from whence they were born. This allows for geographic and 

genetic isolation, which are the key factors leading to river-specific adaptation (genetic differentiation) and 

ecological variability. Substantial genetic structuring is found both between and within watercourses 

throughout the species’ distribution range. 

2.2. Identification 

10. All salmonids possess an adipose fin and an axillary process at the base of each pelvic fin. Wild 

anadromous Atlantic salmon have a body shaped like a torpedo, but old males can have a rather deep body. 

There are few spots below the lateral line and 2-4 spots on the operculum. The pectoral fins are long in 

comparison with other salmonids. The upper jaw reaches only the posterior of the eye, unlike that of the 

brown trout, which extends further. The caudal peduncle is also rather narrow and the caudal fin shallowly 

forked (V-shaped) in comparison with brown trout.  
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11. Atlantic salmon have a silvery colouration during ocean life and turn brownish during 

maturation, with males also developing reddish hues. Anadromous males develop a characteristic hooked 

jaw (kype) that is thought to be important during breeding competition. 

12. Farmed Atlantic salmon have a plump body form, with numerous spots and scales may be 

missing. Fins are commonly worn and may be crippled. Sometimes fin rays grow together or fuse, 

particularly in the dorsal and pectoral fins. Scales, which are a good indicator of age and growth, can be 

used to distinguish wild from farmed salmon. The scales of wild salmon demonstrate the characteristic 

narrow annuli of the freshwater phase and wide bands representing the fast marine growth. Farmed salmon 

have a rather steady growth and lack the clear difference of freshwater and marine phase annuli. 

13. Juveniles in the parr stage have 7-13 dark “parr marks” on each side. Red spots occur mainly 

along the lateral line. The adipose fin is grey. Smolts turn silver as a sub-cutaneous deposit of guanin is 

laid down, concealing the parr marks, and the pectoral and caudal fins turn black. At this stage the 

juveniles establish the characteristic torpedo-shape. 

14. Smoltification (i.e. process of preparing for the transition from fresh to salt water) is size 

dependent and may occur from ca. 10 cm fork length. This, however, varies among populations and among 

individuals within populations, with fast growing parr smolting at younger ages and smaller sizes than 

slower growing parr (Jonsson and Jonsson, 2011).  Older smolts can reach up to 22-25 cm. The maximum 

size of adults depends strongly on the time spent at sea. Female Atlantic salmon reach a length of 120 cm, 

and males reach a length of up to 150 cm. Maximum weight is 40 kg. Very large fish are commonly repeat 

spawners in their second or third migration. Survival to repeat breed is generally low (11%, ranging from 

<1% to 43%), and more so, for males than females (Fleming, 1998). 

15. The scale count between the base of the adipose fin and the lateral line and the length of the 

upper jaw bone or maxilla in relation to the eye are two of the most reliable external features for 

distinguishing Salmo salar and the trout Salmo trutta. 

Table 2. Distinguishing features of species of the genus Salmo and the genus Oncorhynchus 

 Salmo salar Salmo trutta Oncorhynchus kisutch Oncorhynchus 

gorbuscha 

Upper jaw bone Extends to the level of 

the rear of the eye 

Extends well beyond 

the level of the eye 

Extends beyond the 

level of the eye 

Extends beyond the 

level of the eye 

Scale count between 

base of adipose fin and 

lateral line 

10-13 13-16 - - 

Number of dorsal fin 

rays 

10-12 12-14 9-12 10-15 

Number of anal fin 

rays 

8-11 10-12 12-17 13-19 

Number of gill rakers 

on first arch 

15-20  

(slender) 

14-17 

(short and stubby) 

18-25 

(coarsely toothed) 

24-35 

Number of scales in 

the lateral line 

- - 121-148 

(scales moderately 

large) 

147-205 

(scales small) 

Other distinguishing 

features 

Caudal peduncle 

narrow; 

Caudal fin shallowly 

forked 

Caudal peduncle deep 

and rather flat; 

Caudal fin square-cut 

or slightly concave to 

slightly convex 

A long scaly process in 

axil of pelvic fin; 

Adipose fin well-

developed 

Breeding males have a 

pronounced humpback 

    Source : Mills, 1991 
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Figure 2.  Image of Atlantic salmon (Salmo salar) 

 

    

Atlantic salmon (Salmo salar) 

Source : Pål Thomas Sundhell 

3. Life stages and generation Time 

3.1. General aspects 

16.  The full life cycle of Atlantic salmon ranges from three to twelve years. The generation time in 

wild and domesticated Atlantic salmon strains has a genetic component, but it is strongly modified by 

environmental factors such as temperature, food abundance (cultivation: feeding regime) and density. 

Environmental determinants (temperature and flow regimes, predation, and food availability) also provide 

the potential for population-specific adaptation of juvenile salmon to natal streams. The combination of 

genetic and environmental determinants allows for the wide diversity found in naturally occurring Atlantic 

salmon populations throughout their native range.  

17. The generation time varies among rivers and even between river sections, mostly as a result of 

variation in the mean age at smolting. Variation in growth rate results in variation in size and age at 

smolting and an association between an index of growth potential (combination of degree-days and day 

length) and mean age at smolting has been shown for Atlantic salmon throughout its range (Metcalfe and 

Thorpe, 1990).  

3.2. Incubation 

18. A spawning nest known as a redd is formed by the female in the gravel at the bottom of the river. 

Hatching usually occurs after 400-450 day-degrees (i.e. the sum of daily temperatures [
o
C]), but this can be 

shorter for populations in the northern range of the distribution, where temperatures are consistently low 

for long periods. Incubation time correlates closely with climate, i.e. water temperature during incubation. 
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In warmer regions (southern range of the distribution) it may be only eight weeks, with spawning occurring 

late (December–February) and emergence of the fry occurring early (March–April). In cold rivers 

(northern range) the incubation period can be up to 8 months, with spawning occurring early (September–

October) and emergence occurring as late as June due to the slow incubation process. The optimal 

temperature for incubation is between 1 - 10° C; below and above this range incubation success is 

generally reduced. Survival during this period can correlate positively with egg size, particularly if oxygen 

conditions in the gravel nest become stressful for the embryos (Einum et al., 2002a). 

3.3. Alevin stage 

19. After hatching, alevins live off their yolk sac, which is attached to their under surface. At this 

stage, which takes place in and around the gravel of the redd (15-30 cm below the river bottom), alevins 

become increasingly mobile. During the first days, alevins are positively geotactic and negatively 

phototactic, but as yolk sac absorption progresses they become negatively geotactic (movement towards 

the surface of the redd) and positively phototactic and rheotactic. The duration of the alevin stage depends 

on temperature and ranges from ca. 20 to 120 days. The time from fertilisation to emergence also varies 

with egg size, but the effect is small with large eggs taking a few days (ca. 3 days) longer than small eggs 

(Einum and Fleming, 2000a). 

3.4. Fry stage 

20. As yolk sac absorption nears completion the fry stage begins with emergence of fry from the 

gravel and the start of active feeding (mostly on invertebrates). Fry then begin to disperse from the area 

around the redd. Most of the fry disperse downstream (though the highest concentrations often remain near 

the spawning grounds), with pools being avoided. The fry stage ends when the fish settle and establish 

small territories, which they defend against conspecifics of the same year-class. Evidence suggests that 

both earlier emergence (prior residency) and body size can afford fry success in competing to establish a 

territory (Brännäs, 1995; Cutts et al., 1999; Harwood et al., 2003) and in subsequent survival (Einum and 

Fleming, 2000a; 2000b). 

3.5. Parr stage and age at smoltification 

21.  Effective foraging and anti-predator behaviours correlate positively with survival 

(Einum and Fleming, 2001). The duration of the parr stage again depends on productivity, temperature, 

density, and on the social status of the individual (i.e. dominant individuals often attain faster growth than 

subordinate individuals; Harwood et al., 2003; Nislow et al., 2011). Faster growing juveniles generally go 

to sea at a younger age. Smoltification normally occurs at a minimum size of 10 cm fork length, but this 

varies among populations. As part of the population continues to grow through winter, juvenile salmon 

develop a bimodal length distribution. The upper modal group (UMG) is composed of larger fish likely to 

smolt the following spring. The lower modal group is composed of smaller fish likely to spend at least one 

more year before smolting; older smolts are usually larger at smolting than UMG-smolts. In productive 

rivers older smolts, which spend one or more extra years in freshwater, can reach a size of more than 

20 cm. Bimodality in length frequencies is a phenomenon mainly observed in wild populations that 

produce 1 year old smolts. 

22. Because smoltification is mainly size dependent, the proportion of early smolts correlates with 

temperature, density and productivity of the stream. Thus there is a general tendency for smolt age to 

increase with latitude, though the pattern differs between the European and North American continents 

(Metcalfe and Thorpe, 1990). Smolt age can vary between 1 and 8 years. In the southern range, the vast 

majority of a year class reaches the threshold size of 10 cm in the first year and most smolts are one year 

old. Smolts older than two years seldom occur. Generation time is therefore short. In central Europe 
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(e.g. Rhine, Loire), and in the other regions with a moderate climate like Ireland and southern British Isles, 

around 50% of the parr reach 10 cm after one year and emigrate as smolts. Age-one smolts measure 

usually between 10 and 15 cm. Two year old smolts reach 12–22 cm. Three-year smolts are rare (<1%). In 

the Gulf of Maine and Canadian Maritimes, Scotland and southern Scandinavia the majority of smolts are 

two and three year olds; one-year and four-year smolts are rare. In central Scandinavia, in parts of the 

Russian federation and parts of Canada (e.g. Quebec and Newfoundland) smolts age varies between 2 and 

5 years. There are essentially no 1-year smolts produced naturally. In northern Scandinavia and northern 

Canada (Labrador and Ungava Bay) parr commonly need 4-8 years to reach the critical size for 

smoltification. Smolts of ages one and two rarely occur in these regions. 

23. Atlantic salmon smolts emigrate from freshwater nursery areas during spring and early summer 

(March - August) to feed and grow in the North Atlantic Ocean. The timing of the transition from the 

freshwater (‘parr’) stage to the migratory stage (‘smolt’) is cued by photoperiod and water temperature, 

with photoperiod as the dominant cue (McCormick et al., 1998; 2002). For Atlantic salmon, the timing of 

the smolt migration has an important role in determining smolt survival in the marine environment, and it 

is believed that Atlantic salmon smolts are adapted to use environmental cues in rivers that may predict 

favourable ocean conditions for them to initiate downstream migration (Hvidsten et al., 1998, Thorstad 

et al., 2012, Otero et al., 2014). Hence, the timing of the freshwater emigration has likely evolved to meet 

environmental conditions in the ocean as these affect growth and survival of the post-smolts.  

24. A recent analysis of spatio-temporal variations in the dates of downstream smolt migration in 

67 rivers throughout the North Atlantic show that in addition to a latitudinal cline with southern 

populations migrating earlier than northern ones (e.g. Hvidsten et al., 1998) - the timing of migration 

differed strongly between the East and West Atlantic, with western populations migrating to sea at later 

dates than eastern populations at corresponding latitudes (Otero et al., 2014).  After accounting for this 

spatial effect, the initiation of the downstream migration among rivers was positively associated with 

freshwater temperatures, up to about 10°C and levelling off at higher values, and the timing was also 

positive associated with sea-surface temperatures. Earlier migration occurred when river discharge levels 

were low but increasing (Otero et al., 2014). On average, the initiation of the smolt seaward migration has 

occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology 

matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is 

responding to the current global climate changes (Otero et al., 2014). 

3.6. Post-smolt stage and sea age 

25. Atlantic salmon spend one, two, three and sometimes four winters at sea. Those that spend more 

than one are known as MSW (multiple sea winters) fish. Five-sea-winter (5SW) fish are very rare, as well 

as 0SW fish. Individual fish within a population that grow faster prior to smoltification tend to have 

younger sea ages than those with slower pre-smolt growth rates (Einum et al., 2002b). The duration at sea 

is also stock-dependent and in part, genetically controlled. Recently, a study of 1SW and MSW Atlantic 

salmon populations from the three phylogeographic lineages of Atlantic salmon in Europe, based on using 

a 220,000 SNP-chip, has identified a gene that strongly affects sea age at maturity in salmon (Barson et al., 

2015), Some populations consist mainly of grilse (1SW fish), others are dominated by 2SW fish (e.g. most 

populations in the river Rhine, French Loire-Allier, Danish Skjern, and Gulf of Maine, and many 

Norwegian, Scottish and Canadian Maritime populations). In some populations 3SW fish are lacking 

completely (e.g. many Irish populations). Long/large rivers frequently have multiple-sea-winter 

populations and shorter/smaller rivers less frequently so (Jonsson et al., 1991). Grilse populations dominate 

in small rivers, though there are exceptions. Thus migration distance alone does not explain the variability 

observed among populations. There are suggestions that changes in the grilse/MSW ratio can be explained 

by changes in oceanic temperature or feeding conditions at sea (Gudjonsson et al., 1995; Otero et al., 

2012). 
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26. Growth in the marine environment is rapid. After one sea-winter, adult Atlantic salmon usually 

reach 50-75 cm total length. After two sea-winters, the fish reach 65-90 cm. 3SW salmon can measure 

more than 100 cm.  

3.7. Lake age 

27. The duration of feeding in lakes is also stock-dependent and growth tends to relate to the size of 

the lake (faster in larger lakes). Atlantic salmon spend from 1 to 9 winters in lakes (Klemetsen et al., 2003). 

Post-spawning mortality is low among resident individuals (dwarf forms are an exception) and repeat 

spawning common (one individual had 5 “spawning marks” (Smirnov, 1979)). 

3.8. Age at sexual maturity 

28. Sexual maturity is variable between sexes. In productive streams, males frequently reach sexual 

maturity at the parr stage during their second or third autumn. Maturity may be reached even during the 

first year at a size of less than 7 cm fork length. The frequency of males maturing as parr varies widely 

(range 2-100%), and appears to decrease with latitude (reviewed in Fleming, 1998). Females rarely mature 

as parr in anadromous populations. Females in landlocked/ouananiche populations, however, frequently 

mature at sizes smaller than that found in anadromous populations, and occasionally at sizes similar to that 

of mature male parr of anadromous populations. 

29. In anadromous salmon populations having MSW fish, males often tend to mature at younger ages 

than females (i.e. males dominant numerically within the grilse component). However, some of the oldest 

and largest fish in these same populations may be males. 

30. The persistence of a single year class in a stream (or the maximum age of a salmon) is generally 

shorter in the southern range than in the northern range. Repeat spawners are generally infrequent; 

however, in some populations over 40% of the spawners may be repeat breeders (e.g. historically Inner 

Bay of Fundy). The maximum life span in the wild is around 15 years. 

Age structure: 

1. In all salmonids, the life span of fish of northern populations is longer than in southern 

populations. 

2. Males and females differ in the rate of sexual maturation; the early maturing age classes 

mostly comprise males. 

3. Atlantic salmon males can reach sexual maturity in freshwater at the parr stage (as early as 0+ 

fish); some may subsequently stay in freshwater as resident parr, while others may migrate to 

the ocean to undertake an anadromous life cycle. 

4. The age structure of different populations is not identical; the freshwater phase can last 1-2 

years in southern populations and up to 8 years in far northern populations.  

5. In the same population, age structure varies slightly from one generation to another, but one 

or two age groups usually remain dominant. 

4. Reproduction 

31. Salmon are known for their ability to return to the rivers in which they were born (usually more 

than 94-97 % accuracy; Stabell, 1984; Jonsson et al., 2003), a trait that segregates populations and leads to 

a variety of local adaptations. The low level of straying that does occur to neighbouring rivers may in some 

cases result in a metapopulation structure (i.e. a set of local breeding populations connected by exchange 
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of some individuals). The resulting network of local populations provides a balance between local 

adaptation and the evolutionary flexibility that results from exchange of genetic material among 

populations (NRC, 2004). 

32. The return to freshwater to breed may occur from spring until fall, and in some cases as much as 

a year in advance of spawning (e.g. in Ungava Bay, northern Norway and Russian federation). Migration 

timing is a characteristic of individual populations (e.g. MSW fish entering before grilse) and 

environments (e.g. hydrological and temperature regimes, and length and physical difficulty of ascent). 

Upon entry, Atlantic salmon in some river systems remain for several months in the lower reaches of the 

river before ascending to the spawning grounds. In large river systems, it appears that those that enter 

earliest migrate the furthest upstream to spawn. 

33. Spawning time, which is heritable, appears to be an adaptation to favourable conditions for 

spawning, embryo incubation, and juvenile emergence and subsequent feeding (Jensen et al., 1991). A 

female’s spawning time will dictate the thermal regime her embryos experience during development and to 

a large extent, their hatching and emergence time from their gravel nest. Peak spawning times vary among 

populations from September to February (most common period is late fall), reflecting differences in water 

temperature regimes during incubation (Heggberget, 1988). Thus, northern populations frequently spawn 

before more southerly populations, and upstream populations may spawn significantly earlier than 

downstream populations in the same river system (Webb and McLay, 1996). Spawning within populations 

spans several weeks and can last as long as 10 weeks.  

34. On the spawning grounds, the behaviour of the two sexes differ markedly, with female behaviour 

being shaped principally by natural selection for offspring production and survival, and male behaviour by 

sexual selection for access to matings (Fleming, 1996; Fleming and Einum, 2011). Females choose 

spawning locations within the river that provide favourable incubation environments for eggs (i.e. often the 

upstream end of riffles, having low concentration of fines and high oxygen permeability). She deposits her 

eggs within dedds that she creates by digging actions with her caudal fin. Once fertilised, the female covers 

the eggs immediately with gravel and begins preparation of the next nest. A female will construct 5-8 nests 

typically, and up to as many as 14, to deposit all her eggs in. The number of nests constructed increases 

with female size, as does their depth. Nest depth reduces susceptibility to destruction from superimposition 

by later spawning females, gravel shifts caused by flooding, and freezing. Once females have completed 

nesting, which takes a median of five to six days from start to finish, they do not overtly defend their site(s) 

in contrast to Pacific salmon, which do so until death. After spawning, female Atlantic salmon simply 

descend from the spawning grounds to a nearby pool or back to the mainstem river.  

35. Female fecundity varies considerably both within and among salmon populations, as both egg 

number and size increase with body size (reviewed in Fleming, 1996). However, relative fecundity 

(i.e. eggs per kilogram body weight) varies much less (typically 1 200–2 000) and inversely with fish size 

(i.e. smaller fish have more eggs per kg than larger fish). 

36. Male Atlantic salmon do not participate in nest acquisition or construction, but rather seek out 

and compete for access to spawning females. As a consequence, males spend considerably more time on 

the spawning grounds than females seeking breeding opportunities. While absolute sex ratio of 

anadromous fish (i.e. excluding mature parr) within spawning populations may vary from 20% to over 

90% female (Fleming, 1998), the operational sex ratio on the spawning grounds (i.e. the number of 

sexually active males to females at any one time) is frequently male biased. This is because each female 

breeds for only 5-6 days, while each male has the capability to spawn rapidly and repeatedly over the 

several weeks of the spawning season. As a consequence, there is intense competition among males for 

access to spawning females, which has resulted in the evolution of specialised breeding traits in males, 

such as the hooked jaw or kype and an alternative male reproductive strategy (see next paragraph).  
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37. The intense competition among large anadromous males for access to breeding females (i.e. 

courting and fighting, with large size being advantageous), provided the opportunity for an alternative 

reproductive strategy to evolve. A proportion of males (2-100%) may mature precociously as parr, at less 

than a hundredth the weight of the anadromous males, and use their small size to sneak access to spawning 

females (i.e. rather than court and fight). The expression of the alternative strategy appears to have both a 

genetic and environmental (i.e. growth rate) component. Such males may also subsequently migrate to sea 

and return as a large anadromous male. 

38. The larger size of anadromous males, and consequently greater ejaculate volume of sperm, 

typically affords them greater individual fertilisation success during spawning (averages 9-70% of the 

eggs) than mature parr (averages 3-14%; Fleming and Reynolds, 2004). However, mature male parr, as a 

group, can be responsible for fertilising a considerable proportion of the eggs within populations (11-65%; 

Fleming and Reynolds, 2004). As a result, they can increase the genetically effective size of the population 

and partly compensate for low returns of anadromous fish (males). The younger age at maturity compared 

to anadromous males also means that mature parr shorten generation times. However, they can also be 

vehicles for promoting genetic introgression (e.g. by escaped farm salmon; Garant et al., 2003), because 

they breed prior to migration to sea, where mortality can be high and selective.  

39. Hybrids of Atlantic salmon and brown trout are found in all the regions where Atlantic salmon 

and brown trout are sympatric. The main factors contributing to the inter-specific hybridisation are thought 

to include sneaking by mature male parr, natural breeding by escaped and released cultured salmon, 

unstable river discharges, and overfishing. Experimental crosses suggest that the survival of F1 hybrids can 

vary widely from little or no viability to full viability. The usual consequence of post-F1 hybridisation is 

the wastage of gametes.  

5. Centres of origin and geographical distribution 

5.1. Centres of origin 

40. There is conclusive palaeontological evidence that the existing salmonid species appeared in the 

late Tertiary period, in the Pliocene, and became widespread in the Pleistocene, i.e. several million years 

ago. Most studies agree that salmonids originated in fresh water, but the evidence is sparse. There is some 

morphological and genetic data suggesting that Atlantic salmon evolved from brown trout 

(Dorofeeva, 1998), which would imply that the species appeared first in Europe where brown trout is 

widespread. Modern populations of the British Isles have the highest mitochondrial DNA (mtDNA) 

haplotype diversity (Verspoor et al., 1999), with the Kola peninsula being a secondary center of genetic 

diversity. The latter is an area of post-glacial mixing of Atlantic salmon from three refuges: “British”, 

“Baltic” and “North American” (Makhrov et al., 2005). 

5.2. Geographical distribution of native populations  

41. The native range of Atlantic salmon extends along both sides of the North Atlantic Ocean 

(Figure 3). In North America, it occurs from the Connecticut River in the south (a re-introduced 

population, completely dependent on artificial supplementation) to Sango Brook (55
o
53’N) in Labrador 

and into Ungava Bay (58°N). Historically, Atlantic salmon were likely present as far south as the Hudson 

River, but have since been extirpated from watersheds south of Maine. Similarly, Atlantic salmon once 

extended as far west as Lake Ontario, but were extirpated in the late 1800s, and are now confined to areas 

east from the Jacques Cartier River (71
o
45’W) near Quebec City. The Atlantic salmon distribution extends 

eastwards to Greenland (1 population), Iceland, the British Isles and continental Europe. In Europe, 

Atlantic salmon occur from the Kara River (Kara Sea, Russian federation) to the Douro River (northern 
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Portugal) and into the Baltic Sea basin. The northern distribution limit in Europe extends to just above 

70°N. 

Figure 3. Geographic marine distribution of the Atlantic salmon in the North Atlantic Ocean 

 

 Source: courtesy of Eva Thorstad and Kari Sivertsen 

5.3. Naturalised populations 

42. Introduced and free-living (i.e. self-sustaining) anadromous populations of Atlantic salmon are 

known only within their broad native range (i.e. North Atlantic). Most such introductions have involved 

the removal of migratory barriers (e.g. impassable waterfalls) that restricted access to watersheds or river 

sections within watersheds. However, in the 1950s Atlantic salmon were introduced to the Faeroes and 

have since become established in five rivers. Attempts to introduce Atlantic salmon to west Greenland 

rivers failed because of the low water temperatures. Greenland has only one river system in the south with 

an indigenous Atlantic salmon population. 

5.4. Introduction efforts outside the natural distribution area 

43. During the early 1900s attempts were made to introduce Atlantic salmon to some British 

Columbia (Canadian Pacific coast) watersheds in a deliberate attempt to establish runs for sport fishing. 

Nearly 200 introductions were made into 52 different water bodies and a total of 13.9 million eggs, alevins, 

fry or smolts were introduced. None of these introductions was successful in terms of establishing runs of 

Atlantic salmon on the British Columbia coast. In the United States there have been at least 170 attempts in 

34 different states where Atlantic salmon were not native, including Washington, Oregon, and California 

(MacCrimmon and Gots, 1979). None of these efforts was successful. For example, in Washington State 

attempts were made from 1904 to 1991 by U.S. agencies to introduce and establish Atlantic salmon and not 

a single self-sustaining population was established. 
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44. Similar results have occurred with Atlantic salmon introductions in Australia, New Zealand, 

South Africa, Chile and many other countries. There has never been a documented successful introduction 

(i.e. resulting in a self-sustainable population) of sea run Atlantic salmon outside of their natural territory 

where other native salmon species were present. There is a successful introduction reported from New 

Zealand, although the Atlantic salmon releases resulted only in non-migratory populations (Waiau system). 

However, incipient feral Atlantic salmon populations (i.e. presence of juveniles from natural spawnings) 

have been reported from rivers in British Columbia, South America and the sub-Antarctic Kerguelen 

Islands (MacCrimmon and Gots, 1979; Ayllon et al., 2004).  

6. Habitats, migration, and ecological niche 

45. The physical habitat requirements of the Atlantic salmon vary from life stage to life stage. 

Three major stages can be identified: (1) spawning and incubation; (2) juveniles in freshwater; and (3) 

post-smolts and pre-adults at sea. 

6.1. Spawning habitat 

46. Habitat requirements for spawning and incubation can vary among regions and populations. The 

major requirement for adult salmon is an accessible spawning area, which is of adequate size for digging 

nests and provides a safe location for these large fish. Shelter nearby is also important for salmon as they 

wait to spawn (e.g. undercut banks, overhanging and submerged vegetation, submerged objects like logs 

and rocks, floating debris, deep water, turbulence and turbidity; Bjorn and Reiser, 1991). The gradient of 

spawning rivers usually is 3 per cent or less. The preferred spawning site is a transitional area between pool 

and riffle where the flow is accelerating and the depth decreasing, and where gravel of a certain coarseness 

is present (Petersen, 1978; Bjorn and Reiser, 1991). In such a location, downwelling water fluxes through 

the gravel are typical, providing a certain level of dissolved oxygen in the immediate vicinity of the eggs. 

However, wide ranges of water flow and depths are reported. In the Russian river Varzuga, Atlantic 

salmon spawn at depths of 2 m. Minimum depth seems to be 10-15 cm (depending on the size of the 

spawning fish). Areas with upwelling groundwater may also be selected as spawning sites. Spawning by 

Atlantic salmon in lakes is rare, but has been documented in the non-anadromous ouananiche 

(Cowan and Baggs, 1988).  

47.  The particle size distribution of the sediments at the spawning sites is normally dominated by 

gravel in the 32 -128 mm range but varies within and between rivers, dependent on local- and catchment-

scale characteristics (Petersen, 1978; Greig et al., 2005; Miller et al., 2008). During the incubation of ova 

and the emergence of fry, the intergravel physio-chemical environment is critical, and adequate flow of 

water through the gravel is especially important. The proportion of fine sediment/sand in the gravel must, 

therefore, be low, i.e. < 10-20% by weight (Petersen, 1978; Chapman, 1988; Crisp and Carling, 1989) to 

facilitate oxygen availability (Greig et al., 2007). Incubation, hatching and absorption of the yolk sac takes 

place some 10 - 30 cm deep in the gravel (De Vries, 1997). Under normal conditions mortality at this stage 

is low (< 20 %) but there is a risk of additional mortality through scour and dewatering. When absorption 

of the yolk sac is almost complete, the fry emerges from the gravel bed to start feeding. Mortality rates are 

very high (68-88 % in the first 17-28 days; Einum and Fleming, 2000b) due to displacement, starvation and 

predation. Emergence from the gravel and first-feeding are thus periods of intense selection. 

48. During the incubation of ova and the emergence of fry, the intergravel physio-chemical 

environment is critical, and adequate flow of water through the gravel is especially important. The 

proportion of fine material in the gravel must, therefore, be relatively low. Petersen (1978) found that if the 

content of sand (i.e. grain size less than 2 mm) exceeded 20 per cent by weight, the permeability was 

reduced to zero. Other authors state that productive, good quality spawning gravel contains less than 5 per 
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cent fines (grain size less than 0.8 mm) while unproductive gravel sites are characterised by more than 

30 per cent fines (reviewed in Fleming, 1996). 

49. Incubation, hatching and absorption of the yolk sac takes place some 10-30 cm deep in the 

gravel. Under normal conditions mortality at this stage is low (< 20 %). When absorption of the yolk sac is 

almost complete, the fry emerges from the gravel bed to start feeding. Mortality rates are very high (68-

88 % in the first 17-28 days; Einum and Fleming, 2000b) due to displacement, starvation and predation. 

Emergence from the gravel and first-feeding are thus periods of intense selection. 

6.2. Juvenile freshwater habitat 

50. For the interpretation of spatio-temporal distribution patterns of juvenile Atlantic salmon within 

freshwater, it is necessary to distinguish between habitat preference, which is based on the habitat 

requirements of the individual (looking for its optimal micro-habitat), and habitat utilisation, which is a 

compromise (trade-off) between the innate requirements and how these can be met by availability within 

the habitat.  

51. Freshwater habitat use includes fluvial, lacustrine and estuarial environments. Often individual 

fish will utilise several habitat types during thier freshwater residency. For example, parr may use small 

tributaries to spawning rivers as feeding areas during their first summer of life and as they get older move 

to the mainstem river or even into small lakes. The highest population densities are frequently associated 

with rivers that have moderate temperatures and flows. Such rivers contain riffle, run and pool sections in 

lower stream orders (i.e. tributaries and smaller rivers) and are dominated by moderate size “cobble” 

stones. Parr are highly territorial and territory size depends on food abundance, substrate coarseness 

(instream cover, visual isolation) and social status. Heggenes (1990) considered water depth, water 

velocity, and streambed sub-stratum cover to be the principal physical variables for juvenile salmon in situ. 

Most relevant studies refer to one or more of these variables in discussions of habitat characteristics. 

Connectivity between a variety of habitats will also be important for providing alternative shelter/feeding 

opportunities seasonally and for providing a conduit to pass from one habitat to another (e.g. rearing 

stream to estuary). 

52. Atlantic salmon inhabits cool temperature streams and can tolerate freshwater temperatures 

ranging from 0 to 28
o
C. Under laboratory conditions (given food in excess), summer acclimatised juvenile 

salmon generally show positive growth from 5-7 to 24-26
o
C and grow fastest at 16-20

o
C. The thermal 

range for growth declines with reduced food consumption, whereas the temperature for maximum growth 

appears not to change. Winter acclimatised salmon can under laboratory conditions however obtain 

positive growth in temperatures at least as low as 1
o
C (Forseth et al., 2011). Feeding and growth rates are 

highest in spring and early summer. Feeding rates decrease with falling temperatures in autumn, but 

juveniles also feed during winter (Johansen et al., 2011). At high temperatures, juveniles may cease 

feeding and seek refuge from thermal stress. Temperature, food availability, river discharge, season, and 

density are the factors correlated most strongly with growth of juvenile salmon in fresh water. Growth is 

also state-dependent, with growth being accelerated or depressed according to physiological needs or life-

history stages (Forseth et al., 2011).  

53. Atlantic salmon have a minimum pH tolerance level between pH 5.0–5.4 depending on other 

river variables (e.g. aluminium levels); pH tolerance may be population-specific (Donaghy and 

Verspoor, 1997). 

54. Fry and parr densities vary considerably in natural streams. The availability of suitable habitat is 

often considered the limiting factor. Mean salmon densities (m
2
) for a number of river systems in 

Great Britain and Ireland have been reported to range from 0.036 to 2.06 for young-of-the-year and 0.027 
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to 0.334 for one-year-old parr (Kennedy, 1988). The highest reported density of fry was more than 30 per 1 

m
2
, whereas the corresponding density of parr after the first summer can be 4-5 per 1 m

2
 (Veselov and 

Kalyuzhin, 2001). These values come from salmon habitat of high quality. Conversely poor habitats 

support fewer fish. 

55. Fry and underyearling parr have been found to occupy locations other than those occupied by 

older and larger parr. For some areas, significant differences between summer and winter microhabitats 

have been reported (Cunjak, 1988). Juvenile salmon have been observed in water flow velocities from 0 to 

80 cm/s, with the highest densities in areas of 10-75 cm/s velocity. Pebbly riffles without boulders are 

considered to be prime nursery habitat for salmon less than 7 cm long (reviewed by Gibson, 1993). 

56. The proportion of 0+ to 1+ age-group parr decreases as depth increases between 20 and 40 cm; 

yearling or older parr are rarely observed in riffles of less than 20 cm depth and without boulders (particle 

size > 256 mm) (Heggenes, 1990; Gibson, 1993; Schneider, 1998). 

57. Experiments indicate that as parr grow there is an increasing preference for deeper and swifter 

parts of riffles. At 8-9 cm in length, 80-90 per cent of underyearlings prefer cobble/boulder habitats 

(particle size > 6.4 cm) of more than 30 cm depth. In general, juvenile salmon occupy shallow fast flowing 

water with a moderately coarse substrate combined with overhead cover provided by surface turbulence. In 

summer, fry occupy shallower and faster flowing sections of rivers with slightly smaller sized gravel than 

that selected by parr (reviewed by Heggenes, 1990; Gibson, 1993). 

58. Most studies on the microhabitats of juvenile salmon describe the distribution and location of the 

fish during the summer months. However, the habitat utilisation changes when the water temperature falls 

in the autumn. In Scottish rivers, juvenile salmon tend to leave the shallow riffle habitats during the 

autumn and move to deeper water in pools, reappearing in the shallow water when the temperature rises to 

6-7° C in spring (Mills, 1989). Generally, salmonids prefer shelter and low water velocities during winter 

and movement out of summer habitats may not occur in autumn if summer habitats provide appropriate 

overwintering conditions (reviewed by Huusko et al., 2007).  

Summary: 

 Underyearling parr (< 7 cm TL) are most common in shallow (< 15 cm) pebbly riffles with 

broken water surface 

 Larger parr prefer riffles deeper than 20 cm with coarse substrate and some will migrate to 

lacustrine habitats (a niche shift commonly observed in some regions, e.g. Newfoundland) 

 Depth preference and preference for coarse substrate increase with body size  

 Below temperatures of 6-7 ˚C small parr shelter among coarse substrate or move to pools 

    (review by Gibson, 1993). 

6.3. Marine habitat 

59. The transition from freshwater to marine environments for Atlantic salmon can be a critical 

period affecting survival. It is generally believed that water temperature is the main proximate variable 

controlling the onset of smoltification (i.e. process of preparing for the transition from fresh to salt water), 

though photoperiod is also considered important. While the time spent in the estuary or inshore areas near 

the natal river is thought to be brief (hours to a few days), it can be critical for postsmolt survival.  

60. In Europe, the fish appear to leave their natal rivers and head northwards with the shelf edge 

current towards the Norwegian Sea, where they appear to be distributed over large areas. Evidence 

suggests that a relatively large proportion of the European MSW salmon move into the west Atlantic. 
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Grilse spend the winter mostly in the Norwegian Sea east of Iceland. Populations from northern Europe 

may move as far north as Spitsbergen and far eastwards into the Barents Sea. 

61. Baltic populations are restricted to the Baltic Sea, where they live in brackish waters and an 

environment very different from the oceanic conditions of the North Atlantic. 

62. Western Atlantic populations tend to stay in the western Atlantic. In late summer and autumn, 

non-maturing salmon are found inshore along the northeast Newfoundland and Labrador coasts, at West 

Greenland, in the Labrador Sea and in the Irminger Sea including the east Greenland coast. Most salmon 

destined to be MSW fish range over much of the Northwest Atlantic, while those 1SW (grilse) salmon do 

not, staying closer to home. At Greenland, for instance, only salmon that would mature as 2SW and older 

are caught. 

63. The distribution of Atlantic salmon in the sea appears to reflect environmental factors such as 

surface temperature and currents, and food availability. The marine environment can have a strong 

influence on survival and thus recruitment to, and the dynamics of Atlantic salmon populations.  

6.4. Migration 

6.4.1.  Smolt migration 

64. Salmon are flexible and variable in their migration patterns - temperature and season (spawning 

time) seem to be the governing factors. 

65. After the onset of smoltification when young salmon start their seaward migration, their 

displacement in the rivers is largely nocturnal at low water temperatures and affected by factors 

influencing water currents. At higher temperatures and at high latitudes with 24 h daylight, smolts may 

migrate at all times of the day (Davidsen et al., 2005; Ibbotson et al., 2006). The downstream migration 

was previously believed to result from passive transportation by the currents, but several studies have now 

documented that active migration also occurs, with smolts swimming faster than the currents. Progression 

rates of smolts in freshwater may vary considerably with reported speeds of 0.2 to 60 km/day (Thorstad 

et al., 2012). The seaward migration often starts in cool temperatures in spring, but the temperature varies 

among populations and also among years in the same river (Jonsson and Jonsson, 2011). Depending on the 

geographical factors (temperature, day-length, discharge, feeding opportunity), smolt migration can take 

place between March (southern range) and August (northern range). Timing of seaward migration appears 

adapted to favourable temperature and feeding conditions at sea (Hvidsten et al., 1998) and smolts from 

northern rivers generally migrate later than smolts from southern rivers.  

6.4.2. Post-smolt migration 

66. In contrast to the relative uniformity of the riverine environment, the post-smolts encounter a 

complexity of environmental conditions in the estuaries, fjords and coastal waters, where the tides and/or 

winds influence the speed and directions of the surface currents, as well as the distribution of different 

water layers and any fronts that may evolve between these waters. The Atlantic salmon post-smolt 

migration is an active process with an overall seaward vector, but the migration pattern shows great 

individual variability with some post-smolts taking a direct route towards the sea whereas others show 

more irregular movement patterns. Progression rates (how fast the post-smolt travels between two points 

on their route) vary among sites, years and groups of fish studied (Thorstad et al., 2012). Progression rates 

of wild Atlantic salmon post-smolt in coastal areas range from less than 2 km/day up to more than 30 

km/day. True swimming speeds are usually higher as post-smolts do not always take the shortest possible 

route. Progression rates may also depend on the movements of the water currents. In Norwegian fjords 

(which are up to 200 km long) most fish may spend from < 1 week and up to 4 weeks before they enter the 
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open ocean (Thorstad et al., 2012), whereas the residence period in the 230 km long Bay of Fundy in 

Canada may be more than a month (Lacroix, 2008). Migration of post-smolt Atlantic salmon in coastal 

waters occurs during both day and night. Post-smolts usually swim close to the surface during the early 

marine migration (0-3 m depth), but make irregular dives down to about 6.5 m depth. They have been 

shown to swim closer to the surface at night than during the day (Thorstad et al., 2012).  

67. Post-smolts have the capacity to travel rapidly over long distances. Ocean recaptures of post-

smolts, that were individually tagged leaving their rivers as smolts, show minimum progression rates of 

between 6 and 26 km/day (Shelton, 1997; Holm et al., 2003).  

68. Europe: The observed distribution of post-smolts considered in relation to the prevailing 

hydrographic regime suggests a close correlation between strong northerly or north-easterly surface 

currents, temperature, salinity and post-smolt migrations in the north-east Atlantic (reviewed by Holm 

et al., 2003 and Hansen et al., 2003). Also, tidal streams are used. The general patterns indicate that the use 

of currents enables the post-smolts to reach their northern feeding grounds with the least expenditure of 

energy. These currents may act as a “food-stream” as well, with a high concentration of potential prey 

(sand-eels and invertebrates in coastal areas; herring, blue whiting, amphipods and other pelagic species in 

oceanic areas), which post-smolts feed on opportunistically. European Atlantic-going Atlantic salmon 

migrate north along the Norwegian Coast. Atlantic salmon of Iberian, French, and German origin have 

been recaptured in Irish coastal waters. There is evidence that post-smolts from southern Europe (Iberian 

peninsula, France, Germany, Denmark and British Isles) use a migration route along the Faroe-Shetland 

Channel and western sector of the Norwegian Sea. A larger proportion of post-smolts from northern 

Europe (principally Norway) migrate through the eastern sector of the Norwegian Sea. Far north 

populations (Norway, Russian federation) migrate westwards through the Barents Sea, or may use the 

Barents Sea as a rearing area. 

69. Baltic sea: Baltic populations are restricted to the Baltic Sea and rarely migrate into the Atlantic 

ocean. The main feeding areas of Baltic salmon are the Baltic Main Basin and the Gulf of Finland in the 

south and the Bothnian Sea in the north. 

70. The United States and Canada: Postsmolts in the northwest Atlantic Ocean tend to move up into 

the Labrador Sea during their first year at sea for feeding. An exception is thought to be salmon of the 

Inner Bay of Fundy, which may remain within the Bay and surrounding area. Because many postsmolt 

salmon are found in the Labrador Sea within four months of leaving their home rivers, this area is thought 

to be an important nursery habitat for salmon during their early marine life. Water temperatures during this 

period have been shown to influence postsmolt survival and growth, through effects on the salmon 

themselves and on the ecosystem they inhabit. Salmon in this region are found most abundantly in regions 

where sea surface temperatures range from 4 to 10 
o
C. They also tend to inhabit mostly the upper part of 

the water column, but do make deep dives probably in search of prey. 

6.4.3. Spawning migration  

71. The salmon's homing ability is the basis for the classification of the populations. Over the 

generations these populations have developed different inherited characteristics and have thus become 

adapted to their watercourse through natural selection. 

 The time of entry of the main runs of salmon varies from river to river and runs peak at different 

times in different rivers. 

 The spawning migration peak may correlate with mean monthly sea and river temperatures 

during spring: salmon arrive earlier when temperatures are higher and later when temperatures 

are lower (Dahl et al., 2004). 
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 MSW-fish often enter rivers in spring. Grilse (1 SW) runs are often recorded in summer and 

autumn. 

 Some fish enter rivers up to 13 months before spawning (reasons unclear). 

 Particularly in large river systems (e.g. Connecticut, Loire, Rhine), salmon enter all year round - 

but all year return patterns are reported from many small rivers as well. 

 In Arctic regions (Canada, Russian federation) constraints to movement of salmon are imposed 

by sea and river temperatures (=> peak run in late summer). 

 Few fish enter rivers for overwintering, without spawning (Berg, 1964). 

72. The upriver spawning migration of wild Atlantic salmon takes place in three phases: (1) a 

migratory phase consisting of direct or step-wise movement to or close to the position that will be held at 

spawning; (2) a (short) search phase with repeated movements both up- and downstream at or close to the 

position held at spawning; and (3) a holding phase with little or no movement until the spawning. After 

spawning the fish move down into pools of the river, where they hold before exiting the river that fall or 

more often, the following spring. 

73.  Farmed salmon escapees are “homeless” and usually stray to rivers nearby. In the eastern 

Atlantic, escaped smolts are usually transported north by marine currents, so straying normally occurs 

north of the escape sites. 

6.5.  Ecological niche (limiting environmental conditions) 

74. Phenotypic plasticity bespeaks the great ability of this species to adapt to variable conditions and 

rigorous environments that are characteristic of northern latitudes. The life history of a local Atlantic 

salmon population can vary dependent upon water temperatures, photoperiod length, stream productivity, 

ocean productivity, and a host of other environmental factors. One genotype may display a variety of 

phenotypic life histories, depending on environmental conditions (reviewed in Hutchings, 2011). 

Additionally, there is evidence that Atlantic salmon populations have evolved local and regional 

adaptations that are genetically based, due to the relative breeding isolation of populations returning to 

home streams or even stream segments for mating (reviewed in King et al., 2007).   

75. Atlantic salmon may be exposed to widely differing environmental conditions across the species 

range. At some point, one or more physical, chemical, or biological factors likely become limiting and 

adversely affect a critical fitness trait such as survival, growth or reproduction. As discussed earlier in 

Sections 6.1-6.4, optimal and limiting environmental conditions may differ considerably with lifestage 

and/or life history phase, geographic location and habitat (e.g. such as whether the immediate environment 

is a freshwater river or the open ocean), and season. 

76. Potentially limiting environmental conditions may be of a physical, chemical, or biological 

nature.  Examples of these include: 

 Physical – water temperature, turbidity, substrate type, flow 

 Chemical – water chemistry (e.g. pH, dissolved oxygen, salinity) and contaminants 

 Biological – food availability, competition, predators, pathogens 

77. Water temperature is perhaps the most important single factor controlling the overall natural 

distribution of Atlantic salmon and affecting this species’ life history either directly or indirectly. Water 

temperature affects embryo development, fish growth and survival directly, but may also influence 

migratory behaviour (e.g. emigration of smolts), habitat utilisation, and other aspects of life history which 

may indirectly affect growth, reproduction and survival. For example, water temperature may indirectly 
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affects salmon growth and survival by influencing the distribution of plankton assemblages and the prey 

associated with them, which in turn influences food availability for the salmon.   

78. In Atlantic salmon, like other salmonid fishes, the efficiency of the conversion of yolk to body 

tissue is temperature dependent (Heming, 1982; Petersen and Martin-Robichaud, 1995) and declines 

noticeably at temperatures of 12°C and above (Gunnes, 1979; Beacham and Murrary, 1990). The optimum 

temperature for Atlantic salmon embryo development is near 6°C (Petersen et al., 1977) and the upper 

thermal limit near 16°C (Ojanguren et al., 1999). As noted in section 6.2, Atlantic salmon can tolerate 

temperature extremes as great as 0 to 28ºC, but depending on the lifestage, the optimal temperature can be 

much narrower. Upper lethal temperatures in Atlantic salmon may vary by as much as 3ºC among 

individuals (Elliott, 1991) and the upper temperature limit for feeding in fresh water by juveniles is 22.5 ± 

0.3°C (Elliott, 2006). Maximum growth occurs at 16-20ºC (Elliott, 1991; 2006; Forseth et al., 2011). Low 

flow conditions caused by summer droughts in combination with high water temperatures, may be 

particularly limiting. In northern regions, low temperature may be the limiting environmental factor, with a 

cessation of growth normally below 4-7ºC in juveniles (Jonsson et al., 2001; Elliott, 2006). In the marine 

environment, postsmolts seem to prefer a range of 9-11ºC (Todd et al., 2011) and can achieve high growth 

rates at 10-18ºC (Handeland et al., 2008). There is widespread evidence that the marine distribution of 

Atlantic salmon is dependent on temperature (Reddin and Shearer, 1987) and that marine mortality is 

temperature-related (Hansen et al, 2003); however, as pointed out by Potter and Crozier (2000), none of the 

studies to date has demonstrated a clear causal relationship.   

79. The concentration of dissolved oxygen (DO) in water is inversely related to temperature, and as 

such, is an additional stress that may be associated with high temperature conditions.  The incipient oxygen 

level where juvenile Atlantic salmon begin to show stress affecting swimming ability is 4.5 mg L
-1

 Os 

(Davis, 1975). It is suggested that oxygen concentrations not fall below a single-day mean of 8 mg L
-1

 for 

spawning fish, while levels of 5.0–6.5 mg L
-1

 are acceptable for adult fish when not spawning (Binkley and 

Brown, 1993). For embryos, critical levels to meet 02 demands depend on temperature and life stage, 

ranging from ca. 0.8 to 7.0 mg L
-1

 Os, with higher demands during the later stages of embryo development 

just prior to hatching (Davis, 1975). Survival during embryogenesis and during the hatching period appear 

to be limited primarily by oxygen supply and secondarily by water exchange, both having highly 

significant effects (Hamor and Garside, 1976). Availability of oxygen for embryos is tied directly to water 

flow through the incubation gravel and as such, is affected by the presence of fines in the gravel (Petersen, 

1978; reviewed in Fleming, 1996). 

80. Embryos and alevins are highly sensitive to acidification and are affected detrimentally by pH 

lower than 5.5 and cannot tolerate a pH of much less than 4.5 (Petersen et al., 1980; Lacroix, 1985).  

Increased acidity increases the mobility of toxic metals, particularly aluminium and as such, is affected by 

local geology. Older freshwater life stages are also quite susceptible. For instance, low pH during the 

smoltification process can have subsequent detrimental effects resulting in mortality during the ocean 

migration (Magee et al., 2003; Rosseland and Kroglund, 2011). Little is known about the effects of pH in 

marine waters (7.9-8.3 in open ocean surface waters), which are typically much higher than those in fresh 

water, though pH have been decreasing (ocean acidification) in recent decades.  

81. Salinity tolerance in Atlantic salmon is size dependent and the capability of tolerating full 

strength marine waters does not occur until after smoltification (physiological preparation) from ca. 10 cm 

in body length. Earlier life stages, however, can tolerate brackish waters (Cunjak, 1992).  

82. Salmon are susceptible to deteriorating water quality as a result of both direct point-source 

discharges and diffuse or non-point-source pollution such as heavy metals and organic chemicals arising 

from land-use practices or industrialisation (reviewed by Hendry and Cragg-Hine, 2003). 
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83. Salmon can be affected by prey availability at all life stages where they feed exogenously, and 

prey availability will be affected by environmental conditions, such as temperature, water chemistry and 

photoperiod, and both intra- and interspecific competition for such resources.  

84. Similarly, predators (other fishes, birds and mammals; reviewed in Ward and Hvidsten, 2011), 

parasites (e.g. sea lice and Gyrodactulus salaris; reviewed in Finstad et al., 2011; Harris et al., 2011) and 

pathogens (bacterial and viral; reviewed in Harris et al., 2011) have considerable potential to affect 

Atlantic salmon populations. Their effects will be modulated by environmental conditions, both directly 

and indirectly, through any associated stress the fish may be under.  

85. When this document was initially conceived it was assumed that the ecological niche of locally-

adapted wild Atlantic salmon could be defined, at least in broad terms. The genetic basis for the phenotypic 

traits of locally-adapted wild Atlantic salmon is elucidated through the genome projects (Part III), and this 

body of data and information may provide a basis for comparing wild Atlantic salmon to genetically 

engineered lines of Atlantic salmon.  

86. Despite the extensive current and growing body of knowledge on Atlantic salmon, there is still 

insufficient information to adequately describe the critical or limiting environmental conditions controlling 

the survival and distribution of this species. In addition, the underlying genetics that allow for phenotypic 

adaptations to those limiting environmental conditions has not been adequately characterised. 

87. Clear correlations of adaptive phenotypes with specific genes do not yet exist and may be 

available only partially in the future, due to the complications of the genetic heterozygosity and resultant 

phenotypic plasticity present and essential in wild populations of this species (Part III). See Devlin et al. 

(2006) for a discussion of environmental risk assessment of transgenic fish with a recognition of these 

complications. It is extremely difficult to make a convincing case that specific genes are ‘for’ a given, 

relatively well-defined, trait (Kaplan and Pigliucci, 2001). In addition, determining the genetic 

underpinnings of many traits may be difficult, if not impossible, because some of the variation among 

individuals, populations and species is traceable to a certain number of regulatory elements (generically 

defined as any gene producing a product whose function is to turn on or off the action of other genes), or to 

the regulatory regions upstream of genes known to play important roles in development (Pigliucci, 2003). 

7. Population dynamics 

88. Populations of Atlantic salmon vary in size over time, and year-to-year variation in 

environmental conditions is likely to be causing variation in survival rates both in freshwater and at sea 

(Hutchings and Jones, 1998; Einum and Nislow, 2011). Causes for temporal and spatial variation in 

population abundance are commonly divided into two categories: density-dependent and density-

independent processes. In the most common form of density-dependence, population growth rates will 

decrease with increasing population density of Atlantic salmon, and such compensatory mechanisms exert 

a strong regulatory effect on populations (Einum and Nislow, 2011). Competition among individuals for 

limited resources such as food or space (e.g. for access to feeding territories or shelters) increases with fish 

density. Such competition can influence fish survival either directly (by increasing fish mortality) or 

indirectly due to density effects on growth rates and thus fish size-at-age. However, several environmental 

factors may also influence population growth rates directly through density-independent mortality. Such 

factors have constant per capita effects, and operate independent of the population density. For example, 

large-scale climate oscillations in the marine environment appear to have such strong but density-

independent effects on adult Atlantic salmon stock size (Todd et al., 2011).  

89. There is considerable evidence for density dependence in the freshwater life stages of Atlantic 

salmon (Milner et al., 2003), which implies that there is an upper limit to the number of smolts produced in 
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a given river system (Einum and Nislow, 2011; Hindar et al., 2011). Results from a number of recent 

studies support the idea that competition for food and space among similar aged fish, especially age-0 fish, 

is an important mechanism underlying population dynamics and population regulation in Atlantic salmon 

(Nislow et al., 2011). Studies from Canada indicate that the timing of population regulation varies among 

populations (Gibson, 2006). Density-dependent effects appear to be manifested rapidly in single age-

classes in some populations, but to extend over multiple age-classes in other populations. The reasons for 

these differences among populations is poorly understood. 

90. Density dependence in Atlantic salmon populations in the marine environment is relatively 

unstudied, but thought not to be strong if it exists at all. Density-dependent mortality at sea is not likely 

because the population density is assumed to be far below the assumed carrying capacity for Atlantic 

salmon in that habitat (Jonsson and Jonsson, 2004), an assumption that is supported by empirical evidence 

from some populations (e.g. Jonsson et al., 1998). Other density-dependent effects are however possible, 

such as density-dependent predation on migrating smolts in estuaries or adults prior to upstream migration 

for spawning. 

91. Variability in freshwater survival may appear to be less than that in marine survival because of 

compensatory process in freshwater that can potentially buffer some of the variability (Milner et al., 2003). 

That is, decreased survival at certain freshwater life stages can result in increased survival at others due to 

density-dependent processes. Compensatory survival in fresh water results from competition for limited 

resources, including food and space. Thus, populations are regulated more strongly by density dependent 

processes in freshwater than in marine environments and variability in marine survival (due to density-

independent factors) appears to be more important for determining overall population size. 

92. Egg-to-smolt survival rates in Atlantic salmon have been observed to range from as low as 0.1% 

to as high as 6.5% (Klemetsen et al., 2003). Estimates of survival during the marine phase have often been 

more difficult to obtain because adults are enumerated back to the river and have been exposed to both 

natural and fishing mortality factors. There are a limited number of stocks for which the return rates of 

smolts to adults have been measured (Chaput, 2012). In a few instances, the return rates can be inferred to 

represent survival rates at sea, because the adults are almost entirely 1SW maturing salmon. In all other 

cases, where there are two or more ages at maturity, the return rates of smolts to 1SW are the product of 

the proportion of the smolts destined to mature as 1SW salmon and the first year survival at sea. In the 

North Atlantic, return rates of 1SW salmon are generally higher than those of 2SW salmon (Chaput, 2012). 

The highest measured return rates of 1SW salmon in predominantly 1SW stocks are generally in the range 

of 6–12%, whereas in MSW salmon stocks, return rates of 1SW salmon are in the range of 1–6% and for 

2SW salmon, in the range of 1–3%. The return rates of European stocks are generally higher than for North 

American stocks, with return rates to the coast for smolts from the River Bush (1SW stock) being as high 

as 35% (Crozier and Kennedy, 1994) and return rates to the coast for 1SW fish from other stocks generally 

being > 10%. There is evidence from hatchery smolts that body size is an important determinant of 

survival, but its influence for wild smolts has been poorly studied and patterns appear equivocal, with 

evidence for a role in some populations but not others (Friedland et al., 2009; reviewed in Todd et al., 

2011). 

8. Population status and trends 

8.1. Status of populations (by country) 

93. The status of Atlantic salmon worldwide was assessed by Parrish et al. (1998) and by World 

Wildlife Fund (WWF) (2001). Parrish et al. (1998) reviewed available information on the status of wild 

anadromous salmon based on numbers of adults returning to rivers to obtain patterns of salmon status 

across broad geographical areas. Generally, stable populations (no consistent decline in returns) were 



ENV/JM/MONO(2017)64 

 32 

found in northern areas of the distribution range, whereas more southerly populations showed declining 

trends or were extirpated (no returns for at least 10 years). WWF (2001) collated information on 2600 

rivers from national representatives in all countries holding self-reproducing populations of wild salmon. 

Information was considered sufficient for a rough classification in 2005 rivers. Atlantic salmon populations 

are considered extinct from 309 rivers worldwide (15%), and from the following countries: Germany, 

Switzerland, Netherlands, Belgium, Czech Republic and Slovakia. They are considered endangered in 

Estonia, Portugal, Poland and the United States. On the other hand, Atlantic salmon populations are 

considered healthy in 867 rivers (43%), most of which are located in Iceland, Scotland, Norway and 

Ireland (WWF, 2001). The WWF classification may, however, provide misleading information at smaller 

scales (Hindar et al., 2011) as the proportion of rivers with unknown status in this survey was rather large 

in the Russian federation and Canada.  

94. The North Atlantic Salmon Conservation Organization (NASCO) has defined the conservation 

limit in Atlantic salmon fishery management as the spawning stock level below which recruitment starts to 

decline significantly (NASCO, 1998, see Hindar et al., 2011). The precautionary approach then dictates 

that the populations should be maintained above the conservation limit by use of a management or 

spawning target, that is the spawning stock level that ensures population viability. Such conservation limits 

are regularly applied in assessing status of Atlantic salmon by the International Council for the Exploration 

of the Sea (ICES) and national authorities. The assessments differ in detail from assessments of whole 

stock-complexes down to assesments for stocks in individual rivers, and are mainly used as a basis for 

catch advice for mixed-stock marine fisheries and catches in individual rivers.   

95. ICES perform yearly assessments of several stock-complexes in the North East Atlantic Ocean 

that form the basis for catch advice for mixed-stock marine fisheries (ICES, 2012a). For each stock-

complex assessments are made for both 1SW- and MSW-salmon. In the latest assessment, the number of 

spawners of 1SW- and MSW-salmon from the northern North East Atlantic stock-complex (populations 

from Russian federation, Finland, Norway, North & East Iceland, and west-coast Sweden) are considered 

to be at full reproductive capacity and so is MSW-salmon from the southern North East Atlantic stock-

complex (populations from United Kingdom, Ireland, France, South & West Iceland), while 1SW-salmon 

from the southern North East Atlantic stock-complex is considered to be at risk of suffering reduced 

reproductive capacity. Assessment at the stock-complex level can, however, mask the regional and river-

specific situations of Atlantic salmon populations (Chaput, 2012). In some parts of the North Atlantic the 

abundance of Atlantic salmon has declined by much greater amounts than suggested by stock-complex 

assessments, and the abundance of spawners is much lower than interpreted by such (Chaput, 2012). This 

poses particular threats to stocks that are at low abundance and subject to other threats unrelated to fishing, 

such as freshwater habitat degradation.  

96. ICES also provides updated status for salmon stocks at the national level and/or compliance with 

river-specific conservation limits for individual river stocks for the countries where such limits are 

established. In 2011, Russian federation, Norway (for 2010), Iceland, UK (North Ireland & Scotland) met 

national conservation limits (CLs) for both 1SW- and MSW-salmon (ICES, 2012a). Ireland and UK 

(England & Wales) were below national CLs for MSW- and 1SW-salmon, respectively, whereas France, 

Sweden and Finland/Norway (the large River Teno/Tana) did not meet such national CLs for either 1SW- 

or MSW-salmon. 

97. Assessment for individual rivers in the North East Atlantic showed that salmon in 7 of 8 (88 %) 

rivers in Russia met their river specific conservation limit in 2011. The figures for other countries were: 

162 of 211 (77 %) rivers in Norway (for 2010), 11 of 28 (39 %) rivers in France, 58 of 141 (41 %) rivers in 

Ireland, 2 of 7 (29 %) rivers in UK (N. Ireland), and 41 of 64 (64 %) rivers in UK (England & Wales).  
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98. In North America, ICES assesses the status of populations in six regions (Labrador, 

Newfoundland, Quebec, Gulf of St. Lawrence, Scotia-Fundy and the United States) and within each region 

individual river stocks are also assessed. The latest assessment showed that 2SW-salmon spawner 

estimates were above their conservation limits in Newfoundland and Gulf of St. Lawrence, marginally 

below in Quebec, and below the conservation limit for the other three regions, as well as overall for the 

North American stock-complex (ICES, 2012a). The latest assessment was somewhat higher than 

assessments in previous years. To date, 1082 rivers have been identified in eastern Canada and 21 rivers in 

eastern USA, where Atlantic salmon are or were present within the last half century. Assessments were 

reported for 74 of these rivers in 2011 and 45 of the rivers (61%) exceeded their river-specific conservation 

limit (estimated egg deposition by all sea ages combined), whereas 15 of the rivers (20%) reached less than 

50% of their CLs. Individual river stocks which are failing to meet CLs were found in four of the regions, 

but particularly in the southern areas (Scotia-Fundy and the USA). 

99. The status of Baltic salmon is assessed by evaluating the probability that individual salmon rivers 

have reached 50% and 75% of the potential smolt production (ICES, 2012b). In the Gulf of Bothnia and 

Baltic Main Basin the large, northernmost stocks have likely or very likely reached the 50 % objective, but 

only three rivers have likely reached the 75 % objective. Southern stocks and a few small northern stocks 

have variable and, on the average, much poorer stocks. In the Gulf of Finland, salmon stocks show 

indication of some recovery, but the status of most stocks is still poor.  

100. In some countries the conservation status of stock-complexes or individual stocks is also 

characterised with respect to possible future status of the stocks. 

101. The Committee on the Status of Endangerd Wildlife in Canada identifies and assigns 

conservation status of 16 distinct Designatable Units (DUs) for Atlantic salmon in Canada 

(COSEWIC, 2010). A Designatable Unit represents discrete and evolutionary significant units of the 

species that are important to its evolutionary legacy as a whole and if lost would likely not be replaced 

through natural dispersion. Of 15 anadromous DUs, five were classified as endangered (facing imminient 

extirpation or extinction), one as threathened (likely to become threatened by extirpation or extinction if no 

action is taken), four as of special concern (may become threatened), one as data deficient and four as not 

at risk. The five DUs classified as endangered are located in the southern part of Canada (Inner and Outer 

Bay of Fundy, Nova Scotia Southern Upland, Eastern Cape Breton and Anticosti Island). In addition, the 

freshwater living Lake Ontario DU was classified as extinct. 

102. The Norwegian Directorate for Nature Management identifies threats and assesses the status of 

wild salmon stocks in Norway (http://www.miljødirektoratet.no/Villaksportalen/). The most recent update 

(from 2012) gives the status for 481 rivers where salmon are or were originally present. The status is based 

on assessments of how different human impacts affect the production of salmon with respect to the 

viability of the stock and its capacity to produce a harvestable surplus. In addition, the genetic status is 

assessed with respect to possible impacts on the viability of the stock from introgression of escaped farmed 

salmon. Of the 481 stocks, 54 were classified as critically endangered or lost, 44 as threatened, facing 

exctinction if the impacts continue or increase, 126 stocks were classified as vulnerable, potentially 

becoming threatened if the impacts continue or increases, 241 stocks as moderately affected with 

significant reductions in harvestable surplus, 16 stocks had good status, while no stocks were classified to 

have very good status.   

8.2. Trends in abundance 

103. Atlantic salmon abundance in the North Atlantic Ocean has declined the latest decades. Estimates 

by ICES on the development of salmon abundance in the period 1970-2009 suggest that pre-fishery 

abundance (PFA; defined as number of fish on 1 January of their first winter at sea) was highest in the 
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early 1970s at some 10 million fish (Chaput, 2012). By the mid-1990s abundance had declined 

considerably and has, with some variation, remained low thereafter. In the most recent 5-year period, total 

PFA was estimated at about 3.5 million fish. The decline in abundance has generally been larger for MSW-

salmon than for 1SW-salmon. The decline in PFA of MSW-salmon has been larger in the North West 

Atlantic and in the southern part of the North East Atlantic than in the northern part of the North East 

Atlantic. In the period 1970-2009, the catches of Atlantic salmon have declined considerably, especially in 

marine commercial fisheries. The reduction in marine exploitation (fishing) is achieved through great 

reductions in effort or in some cases complete bans. As a result, the estimated number of MSW spawners 

has remained rather unchanged in the North West Atlantic and in the northern part of the North East 

Atlantic, while the number of 1SW spawners has increased in these two areas during the period 1970-2009. 

The estimated number of spawners has decreased over the time period for both 1SW- and MSW-salmon in 

the southern part of the North East Atlantic (Chaput, 2012).  

8.3.  Factors affecting abundance 

104. Three main factors affect the abundance of adult wild Atlantic salmon; smolt production in 

freshwater, natural mortality in the marine environment, and exploitation in commercial (mostly marine), 

and recreational fisheries (mostly riverine).  

105. Historically, many of the declines and extirpations of Atlantic salmon can be more or less directly 

attributed to human activities affecting freshwater production of salmon, such as dams, pollution (including 

acid rain) and dewatering of streams (Parrish et al., 1998). Today, populations are recovering in parts of the 

salmon distributional range due to stronger legal measures to control and reduce pollution from industry 

and sewage systems (c.f. Mawle and Milner, 2003). For example, reduced acid depositions combined with 

extensive liming of rivers affected by acid rain have led to re-establishment of several salmon populations 

in Southwestern Norway that were extirpated or severely reduced (Hesthagen and Larsen, 2003). However, 

many salmon stocks worldwide still suffer reduced smolt production due to different human impacts.  

106. The reasons for the more recent decline in the abundance of Atlantic salmon at the global scale 

are not always as obvious and a mix of interdependent factors is probably involved (Parrish et al., 1998). 

Over the past 30 years post-smolt survival has declined in the entire North Atlantic (Chaput, 2012), and the 

coherence observed in the patterns of declining adult recruitment of salmon over large geographic areas 

suggests that recent changes in mortality have been dominated by factors operating in the marine 

environment. The ocean climate of the North Atlantic has undergone marked changes over the period of 

declining salmon abundance (Beaugrand, 2008; Beaugrand and Reid, 2012). There appears to be a close 

relationship between the growth, maturation, survival, and distribution of salmon at sea and ocean climate 

as reflected in sea temperature (Friedland et al., 2005; Todd et al., 2008). Water temperature and other 

abiotic environmental factors acting indirectly to cause changes in the production and availability of 

suitable food items reflecting large-scale ecological changes in the marine ecosystem may be the primary 

cause of changes in the abundance of salmon, as well as other species (c.f. Friedland et al., 2009). It has 

been suggested that different factors may govern the successful return of Atlantic salmon to rivers in 

Europe and North America, and that survival of European Atlantic salmon is linked to growth and feeding 

conditions whereas survival of North American Atlantic salmon may be more linked to predation 

(Friedland et al, 2005; 2012). 

107. Marine mortality of salmon does not necessarily operate independently of factors acting in 

freshwater. Over recent decades, biological characteristics of Atlantic salmon smolts have changed in 

many rivers (Russell et al., 2012). Juvenile salmon have grown faster and migrated to sea at a younger age, 

so have been smaller typically than they were earlier. Over the same period, smolt run-timing across the 

geographic range has been earlier, at an average rate of almost 3 days per decade. How such changes in 

smolt characteristics and migration timing influence mortality at sea is unknown. Moreover, acidification, 
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contaminants and other factors operating in freshwater may also impact smolt quality with adverse 

consequences for sea-survival of Atlantic salmon (Rosseland and Kroglund, 2011). 

108. The survival of wild and hatchery-reared Atlantic salmon post-smolts during their first year at sea 

has declined in the Baltic Sea from 25-40% in the late 1980s and early 1990s to 5-15% in the period 2005 -

2010 (ICES, 2011). The open-sea ecosystems in the Baltic have experienced pronounced changes in the 

past two decades, characterised by shifts in species composition across several trophic levels (Möllmann et 

al., 2009; Diekmann and Möllmann, 2010). These changes in the ecosystem have affected the abundance 

of both the prey (herring and sprat) and the potential predators (grey seals) of Atlantic salmon. A recent 

analysis showed that the declining trend in post-smolt survival could be explained by the increased number 

of grey seals, whereas the annual variation in survival coincides with variation in the recruitment of 

Bothnian Sea herring (Mäntyniemi et al., 2012). Hence, both food availability and predation could 

contribute in regulating post-smolt survival. However, it remains uncertain whether the observed 

correlations arise from direct causalities or other mechanisms (Mäntyniemi et al., 2012). 

8.4. Threats to salmon populations 

109. Widespread declines and extirpations of Atlantic salmon populations have occurred in Europe 

and North America, particularly in southern portions of the range. Many of these declines or extirpations 

can be attributed to human impacts, such as dams, pollution (including acid rain), dewatering of streams 

and overfishing. The threats, however, are often multi-factorial involving both human impacts in concert 

with environmental change (e.g. changing ocean conditions). In an effort to evaluate the possible factors 

contributing to the decline of salmon, the Department of Fisheries and Oceans Canada convened an expert 

panel, which in the end identified 63 such factors (Cairns, 2001). The threats were often region, or even 

river specific, though some were broader, such as ocean conditions. 

110. The major threats to wild Atlantic salmon populations include: 

 Overfishing in the sea, estuaries and rivers that reduces population sizes to below a critical level. 

 Hydropower dams and other man-made river obstructions that form severe obstacles to upstream 

and downstream migration of salmon, inhibiting access to habitats. 

 River engineering schemes (e.g. for flood defence or navigation) result in direct habitat loss 

(e.g. through channel deepening) and disconnection of the main river from the complex of 

floodplain habitats (e.g. oxbow lakes, channels and islands). Habitat degradation also occurs 

through the resulting changes in ecological processes such as nutrient cycling, sedimentation and 

flooding. 

 Pollution (from industry, urban settlements and agriculture) resulting in acid rain, inputs of 

excessive nutrients and upstream sediments, heavy metals and other toxic substances, including 

endocrine disrupters. These pollutants degrade the salmon habitats and some have direct impacts 

on species mortality and behaviour. 

 Erosion/homogenisation of the natural gene pool through interbreeding with salmon aquaculture 

escapes and thus disruption of local adaptations and evolutionary potential of wild stocks. 

Diseases and parasites (e.g. sea lice) transferred from caged salmon to wild salmon can represent 

a further hazard.  

8.5.  Conservation measures 

111. The conservation and restoration of Atlantic salmon is a daunting task because of the complex 

and dynamic nature of the freshwater and marine ecosystems that the species exploits. It requires the 

identification of the units of conservation (e.g. Evolutionary Significant Units [ESU] as in the 

U. S. Endangered Species Act or Designatable Units [DU] in the Canadian Species at Risk Act) and then a 
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well-documented action plan. Such an approach is being employed with the endangered Atlantic salmon of 

State of Maine and inner Bay of Fundy, Canada. 

112. In the European Union (EU), Atlantic salmon is listed under Annex II in the Flora-Fauna-

Habitats – Directive (COUNCIL DIRECTIVE 92/43/EEC of 21 May 1992 on the conservation of natural 

habitats and of wild fauna and flora). The 1992 Habitats Directive aims to protect wildlife species and 

habitats. Each Member State is required to identify sites of European importance and to put in place a 

special management plan to protect them (in special areas of conservation), combining long-term 

conservation with economic and social activities, as part of a sustainable development strategy. The EU -

Water Framework Directive (2000/60/E) requires that all inland and coastal waters within defined river 

basin districts must reach at least good status by 2015 and defines how this should be achieved through the 

establishment of environmental objectives and ecological targets for surface waters. Anadromous species 

like Atlantic salmon presumably will act as indicators and should benefit from the activities in the member 

states. 

113. NASCO is an international organisation established under the Convention for the Conservation of 

Salmon in the North Atlantic Ocean, which entered into force on 1 October 1983. All governments 

throughout the Atlantic salmon’s native range are NASCO Member Countries. NASCO’s main objective is 

to contribute to the conservation, restoration, enhancement and management of Atlantic salmon. Through 

the NASCO Convention, parties agreed to cooperate in the management of fisheries that exploit Atlantic 

salmon originating in rivers of other parties. The two principal fisheries that are regulated are the West 

Greenland fishery and the Faroese fishery. Both fisheries exploit a mix of salmon populations originating 

from broad geographical areas.  

114. The North Atlantic Salmon Fund (NASF), as a non-governmental organisation (NGO), mobilises 

international support and persuades commercial fishermen to give up fishing for salmon, either 

permanently or for a period long enough to allow stocks to recover. The organisation has raised nearly 

$30-million to buy out netting rights to reduce excessive commercial exploitation. Another international 

NGO is the Atlantic Salmon Federation, which is based out of North America and promotes the 

conservation and wise management of wild Atlantic salmon and its environment. The Atlantic Salmon 

Trust is a UK-based NGO. The Trust addresses the decline of salmon stocks, as well as the need for 

practical research into the problems regarding the decline of salmon populations. 

115. Within the natural range of salmon the following management tools contribute to the 

conservation efforts:  

 Habitat improvement and restoration 

1. Re-establishing migration corridors by building fish-passes at obstructions (weirs, sluices, dams), 

regulation of hydroelectric development or catch and transport of salmon to inaccessible 

spawning habitats (trap and truck) 

2. Rehabilitation of spawning/nursing habitats 

3. Reduction of pollution (including effects of acid rain by liming of rivers) 

4. Regulation of land and water use 

 In-river management of populations 

1. Living and frozen gene banks and hatchery supplementation programs, see NASCO
1
 for more 

information about cultivation and stock enhancement. 

                                                      
1
 http://www.nasco.int/implementation_plans_cycle2.html and http://www.nasco.int/pdf/agreements/williamsburg.pdf 

 

 

http://www.nasco.int/pdf/agreements/williamsburg.pdf


 ENV/JM/MONO(2017)64 

 37 

2. Fishing regulations (catch and release, biological reference points for setting allowable removal 

rates or escapement levels) 

3. Legislation 

4. Control of poaching 

 Regulating marine exploitation 

1. Fishing regulations, quotas (NASCO) 

2. Buy-out of licenses / netting rights (NASF) 

 Salmon farming, estuary management 

116. In order to reduce the possible impacts of fish farming, in some countries (such as Iceland, 

Norway) it was decided to protect (some) wild salmon stocks by establishing fish farm exclusion zones in 

the coastal marine/estuary environment. 

9.  Interactions with other organisms  

9.1.  Salmon as prey 

117. Atlantic salmon are vulnerable to predators at every stage of their life cycle (Mather, 1998; Ward 

and Hvidsten, 2011). The impacts of predation on salmon populations are likely to be particularly severe at 

older life stages and for populations already suppressed by other factors (Ward and Hvidsten, 2011). 

118. Predation on juvenile salmon and smolts in freshwater: 

 Birds: (heron, sawbill ducks, cormorant, gulls, belted kingfisher, merganser, goosander). 

 Fish: (salmon, several native and introduced trout species, charr, bull head, burbot, chub, eels, 

pike, pikeperch, perch, grayling, catfish, smallmouth bass, striped bass). 

 Reptiles (water snakes). 

 Mammals: (otter, mink). 

119. Predation on post-smolts in estuaries, coastal waters and sea: 

 Birds: (cormorant, gannets, terns, gulls, murres) 

 Fish: (gadoids, sea trout, eels, ling, sharks) 

 Mammals: (otter, grey seal, harbour seal, harp seal, harbour porpoise, bottlenose dolphin, beluga 

whale (Middlemas et al., 2003)) 

 

120. In the Baltic sea, the number and abundance of potential predators on young salmon is low 

compared to that in the North Atlantic Ocean. 

9.2. Salmon as predators 

121. Atlantic salmon are generalist predators that feed on available prey. They are gape-limited so that 

prey-size usually increases as the fish grow in length. Juvenile salmon are able to feed successfully in 

different habitats ranging from small streams to large lakes (Johansen et al., 2011). They also feed under 

different light conditions and seasons. In running water, the salmon can feed on invertebrates drifting either 

on the surface or in the water column, as well as on invertebrates living on the streambed surface. Prey of 

salmon in fresh water: 
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 Juveniles are opportunistic predators of aquatic invertebrates, especially those difting at the 

surface or in the water column (e.g. Ephemeroptera, Plecoptera, Trichoptera, Chironomiidae and 

Coleoptera). 

 Larger parr are also piscivorous, feeding on smaller trout and salmon juveniles and eggs. 

 Adult Atlantic salmon are generally believed to cease feeding upon entry into fresh water. 

122. Lakes can serve as nursery habitat for juvenile anadromous salmon and are the main rearing 

habitat for most land-locked or resident Atlantic salmon populations (Klemetsen et al., 2003). Prey of 

salmon in lakes: 

 Invertebrates; fishes, mostly smelt, vendace and stickleback (Smirnov, 1979). 

123. Atlantic salmon are opportunistic feeders, utilising a wide variety of available prey while feeding 

at sea (Rikardsen and Dempson, 2011). The first few months at sea are often regarded as an important 

feeding period in order for young salmon to rapidly enhance their size and reduce their risk of predation.  

Prey of salmon in marine waters: 

 Postsmolts are primarily pelagic and mid-water feeders and their diet includes sand lance and 

other small fish, euphausiids, amphipods, copepods and crab larvae. 

 Piscivory is the main feeding mode for post-smolts > 25 cm in the northwest Atlantic Ocean and 

the diet frequently contains capelin, sand lance and herring. 

 In the northeast Atlantic, invertebrates play a greater role in the salmon diet, which includes 

amphipods, euphausiids, herring, capelin, redfish larvae, blue whiting, lanternfish, sprat, cod and 

smelt. 

 In the Baltic Sea salmon feed on marine fish species such as herring and sprat. In the northern 

parts (Bothnian Sea) only herring is abundant in the diet. 

9.3.  Competition 

124. Juvenile Atlantic salmon may compete amongst themselves and with other species for critical 

resources such as food and space (Nislow et al., 2011). The fish assemblages of salmon river systems in the 

North Atlantic is generally species-poor, and salmon co-exist most frequently with resident and 

anadromous forms of other salmonids, such as brown trout (Europe; has been introduced into North 

America), brook charr (North-America), Arctic charr (Europe and North America) and grayling (Europe). 

Non-salmonid species that co-occur with juvenile Atlantic salmon include cyprinids (frequently demersal 

species), cottids (bullheads), anguillids (eels) and lampreys. For the most part, these species tend to be 

habitat and trophic generalists and may therefore be potential competitors for food with Atlantic salmon 

(Fausch, 1998; Nislow et al., 2011). In some river systems, specialised piscivores such as pike and percids 

also co-occur with Atlantic salmon. 

9.3.1.  Competition for food and space 

125. The large majority of studies of interspecific interactions in Atlantic salmon ecology involve 

salmonid species (review in Nislow et al., 2011). Due to the general reliance of stream salmonids on 

aquatic invertebrates, there is opportunity for prey resource competition between Atlantic salmon and co-

occurring salmonid species. Moreover, competition for space is also expected as other stream salmonids 

may have more or less overlapping habitat requirements with Atlantic salmon. Studies of habitat-use in 

rivers show that Atlantic salmon are often strongly associated with riffle habitats, whereas brown trout, 

Arctic charr and brook charr tend to use slower-flowing areas more extensively. Atlantic salmon are 

particularly well adapted to fast-flowing water due to their large pectoral fins, which may be used as 

hydrofoils to hold station in such environments. However, Atlantic salmon appear to prefer pool habitat 
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both as fry and parr. Thus, their extensive use of riffles might be seen as a displacement due to competition 

with other stream salmonids (Nislow et al., 2011).   

126. There is evidence that brown trout tend to be more aggressive than, and socially dominant to, 

Atlantic salmon of similar size. However, in competition for shelter during winter, dominance depended 

solely on the size and not the species. Both intrinsic dominance (often related directly to relative size) and 

prior residence in a patch of streambed are important factors in establishing outcomes of competition 

between pairs of fish. Such behavioural mechanisms may be important for the outcome of inter-specific 

competition of Atlantic salmon and other salmonids. However, even in situations where the strength and 

direction for pairwise interactions can be tested, the consequences of these interactions for habitat use and 

population dynamics can be complex and difficult to predict (reviewed by Nislow et al., 2011).  

127. Impacts of interactions between Atlantic salmon and brown trout or brook charr are thought to be 

highest during the first year of life when density-dependent processes are most intense (Milner et al., 

2003). A combination of studies involving behavioural ecology, habitat associations and fish distributions 

showed that interspecific interactions between Atlantic salmon and brown trout must be viewed in the 

context of scale (reviewed by Westley et al., 2011). At fine spatial scales, brown trout may out-compete 

Atlantic salmon for many habitats, except those with relatively high water velocity. At large spatial and 

temporal scales, segregation of Atlantic salmon and brown trout among habitats may be apparent. 

128. Quantitative studies on the effects of non-salmonid fishes on juvenile Atlantic salmon are rare. 

Ward et al. (2008) found no evidence of competition between re-introduced juvenile salmon and the native 

fish fauna in tributaries of the Connecticut River (the United States). Studies in the laboratory and field 

surveys, however, indicate that juvenile salmon may influence both the presence and abundance of non-

salmonid species at least in certain habitat types (review by Nislow et al., 2011). At present, it is still 

unclear whether the species assemblages of salmon rivers are best thought of as a community of strong 

interactors, or as a collection of species responding independently to their environment (Nislow et al., 

2011). 

9.3.2.  Competition for spawning sites 

129. Superimposition of Atlantic salmon redds by brown trout or vice versa may occur when 

spawning is not segregated spatially. Atlantic salmon and brown trout tend to select similar spawning 

habitats, which contributes to redd superimposition. Both species were found to construct redds in areas 

with similar water depths, water velocities and distance to stream banks and there was a large overlap in 

gravel size (Heggberget et al., 1988; Louhi et al., 2008). Brown trout tend to spawn earlier than Atlantic 

salmon, but overlap in spawning times can be considerable. Overlap in spawning times is also evident as 

hybrids between Atlantic salmon and brown trout commonly occur, but usually in low frequency, in nature 

(review in Westley et al., 2011). 

9.3.3.  Other types of competition 

130. Marine competition: It has been difficult to determine the extent of competitive interactions faced 

by Atlantic salmon in the marine environment because of the vast scale of the habitat exploited. 

9.4.  Pathogens 

Rationale: Provided, for example, if there is a genuine possibility of increasing the importance 

of a disease or parasite. Critically important organisms and relationships (e.g. a virus disease 

that is a principal management issue) are covered.  
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131. The total number of species of infectious agents reported from wild and domesticated 

(ranched/hatchery) Atlantic salmon in both marine and freshwater habitats is 225 (table 3) (Bakke and 

Harris, 1998). 

Table 3. Total number of species of infectious agents in Atlantic salmon 

Group Number of species 

Virus 9 

Monera 21 
Protoctista 27 

Animalia  

Hirudinea 3 
Helminths  

Monogenea 11 
Digenea 41 

Cestoda 35 
Nematoda 29 

Acanthocephala 20 

Crustacea 13 
Mollusca 3 

Acarina 2 
Fungi 11 

Total number 225 

    Source: Bakke and Harris, 1998 

132. Few pathogens have caused significant disease epidemics in the wild, and although parasites of 

returning adults are well documented, diseases among freshwater stages (parr; e.g. Gyrodactylus salaris) 

seem to be most important, in addition to infestations by the salmon louse (Lepeophtheirus salmonis) in sea 

water. 

133. Gyrodactylus salaris is a freshwater parasite that does not occur naturally in Norway. It was 

probably introduced in Norwegian rivers in the 1970s by infected hatchery-reared salmon. An epizootic of 

this species was reported in Norway in 1975 (Johnsen and Jensen, 2003). The entire lifecycle of the 

parasite is in fresh water, the majority of it spent on young fish. It is less than 0.5 mm in length and 

attaches by hooklets to the scales and fins of the fish. G. salaris has a significant negative influence on the 

Atlantic salmon. Most often it will kill more than 90% of the young salmon in the river after being 

introduced. The monogenean G. salaris naturally occurs in the Baltic Sea drainage. The parasite was found 

in White Sea drainage in 1992 (Keret river) and 2002 (Pista river). The introduction in Norway has 

initiated an extensive program for eradication of the parasite, mainly by use of the piscicide rotenone. This 

strategy has also made it necessary to keep affected salmonid populations in gene banks until they can be 

safely returned to the treated rivers (http://www.dirnat.no/content/2475/Handlingsplan-forslag-mot-

lakseparasitten-Gyrodactylus-salaris). 

134. Many viruses infect salmon within aquaculture facilities, but there are no reports of disease 

epidemics due to viruses in wild salmon populations. However, there is increasing evidence for transfer of 

infectious pancreatic necrosis virus (IPNV) from farmed to wild salmon populations. (reviewed by 

Johansen et al., 2011). It is also likely that the newly discovered piscine reovirus (PRV) is transferred 

between wild and farmed fish. It is highly prevalent in both wild and escaped farmed salmon 

(Garseth et al., 2012). 

135. Numerous bacterial pathogens may cause serious epidemics: Renibacterium salmoninarum 

causes bacterial kidney disease (BKD), a fatal systemic infection of both farmed and wild salmonids. 
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Furunculosis, caused by Aeromonas salmonicida is one of the most important diseases of wild and farmed 

salmonids, and most outbreaks occur when the water temperature is above 10
○
C.  

136. Crustaceans such as sea lice (Lepeophtheirus salmonis and Caligus elongatus) can be a problem 

for the Atlantic salmon farming industry and there are concerns about impacts on wild salmonids as well. 

Marine rearing pens may function as pathogen culture facilities at the crossroads for migrant salmonids 

moving between fresh and salt water. A recent study demonstrates that sea lice infestations may have had a 

large effect on wild salmon in the Northeast Atlantic Ocean (Krkošek et al, 2013), but a similar study 

focusing on Ireland only concludes that sea lice has a minor contribution to marine mortality of salmon 

(Jackson et al., 2013). Apparently, this is still a controversial issue. 

137. Pearl mussel Margaritifera margaritifera L. larvae are a parasite of Atlantic salmon (some 

specialists (Ziuganov et al., 1994) speculated about salmon-pearl mussel symbiosis). The number of pearl 

mussel populations is decreasing. They are currently listed in the European Habitat & Species Directive 

Annexes II and V and in the Bern Convention Annex 3 (Geist, 2005). 
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PART II – BIOLOGY AND REARING OF DOMESTICATED FARMED ATLANTIC SALMON 

  

10.  Domestication 

138. Directed domestication for the commercial production environment began with Atlantic salmon 

gametes obtained from wild stocks as the founder population. Individuals having desired phenotypic traits 

were retained for the next generation of commercial production. The first pedigreed broodstock program 

for Atlantic salmon began in Norway in 1971 (Gjedrem, 2010). See Broodstock rearing and breeding 

(Sect. 11.1) for more information on selective breeding. 

10.1. Intensive aquaculture production 

139. Culture of Atlantic salmon in sea cages was first trialled in the 1960’s in Norway as a means to 

raise Atlantic salmon to marketable size. These early successes in Norway prompted Atlantic salmon 

culture development in Scotland, Ireland, Faroe Islands, Canada, North Eastern seaboard of the United 

States, Chile and Australia (Tasmania). Minor production also occurs in New Zealand, France and Spain. 

The major production areas for Atlantic salmon farming lie within latitudes 40-70° in the Northern 

Hemisphere and 40-50° in the Southern Hemisphere (FAO, 2014). Global production of Atlantic salmon 

exceeded 2.0 million tonnes in 2012 with Norway (1 232 095 tonnes), Chile (386 607 tonnes), 

United Kingdom (162 600 tonnes), Canada (108 118 tonnes), Faroe Islands (76 564 tonnes), Australia 

(43 785 tonnes), United States (19 295 tonnes), and Ireland (12 440 tonnes) as the top eight producers 

(Figure 4; data used to produce graphs from FAO FishStat, 2014). Specific details on the production of 

Atlantic salmon are described in subsequent sections.  
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Figure 4.  Marine volume of Atlantic salmon production from 1970 to 2012 for the top eight salmon producing 

countries in metric tonnes 

 
Numbers for graphs obtained from FishStatJ (FAO, 2014).  

Note: Vertical axis production volumes vary by country. 
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10.2. Differentiation from wild stocks 

140. Cultured fish may be distinguished from their wild counterparts by differences in external 

morphology (Lund et al., 1989; Fleming and Reynolds, 2004), growth patterns in scales and otoliths (Lund 

and Hansen, 1991; Hindar and L’Abée-Lund, 1992), pigmentation (Lura and Sægrov 1991a; 1991b) (for a 

comprehensive review, see Fiske et al., 2005). However, the longer the fish have been in the wild, the more 

difficult it is to use such characters to distinguish them from wild fish. In some instances, fin-clipping and 

external or internal tags have been used to identify fish of cultured origin. Genetic differences between 

cultured and wild fish may also be used as a basis for separation of the two groups and their offspring 

(Skaala et al., 2004). For further information see part III. 

11.  Culture and rearing practices for commercial aquaculture 

11.1.  Broodstock rearing and breeding 

141. Atlantic salmon broodstock programs began in 1971 in Norway with spawning of the first wild 

Atlantic salmon from 18 rivers/strains. A total of 41 rivers were included to produce the first four year 

classes. The number of full sibling families ranged from 120-240 families produced (66-149 families 

tagged) for a total of 721 families (442 families tagged) (Gjedrem, 2010). Despite this effort, most of the 

genetic variation was actually found between and within families of river strains (Gjøen and Bentsen, 

1997). Since these early efforts, other breeding programs have begun worldwide using broodstock that are 

either indigenous to a specific area or comprise a mixture of strains/rivers and possibly from very different 

geographic areas. There is no accepted standard method to run each program and these decisions are often 

a result of space availability and cost of rearing and maintaining fish. Typically, year classes are initially 

created independently using different wild or possibly formerly mass selected broodstock. Over time, year 

classes are combined generally for two reasons: 1) to genetically link the year classes so all data can be 

combined and analysed together and 2) to prevent inbreeding. Genetic diversity is lost over time from the 

complete removal of extremely poor performing families or potential loss of families during production 

(e.g. very poor survival).  

142. The original Norwegian program that began in 1971 eventually merged all year classes into a 

single breeding kernel (from 2005 onwards) comprising over 600 families that were evaluated for 22 traits 

including production/efficiency traits (e.g. fast growth; known as the Effective group) or health/robustness 

traits (e.g. disease resistance; known as the Robust group). Broodstock from these two groups could either 

be crossed to create families that are Effective only (E x E), Robust only (R x R) or a combination of 

Effective with Robust (E x R) depending on the desire of the company planning to grow the fish 

(http://aquagen.no/en/). Other broodstock programs producing and maintaining fewer families per 

generation might attempt to improve their desired traits simultaneously within each year class or choose 

specific traits to focus on within specific year classes (e.g. disease resistance in even years). If the latter 

approach is used then introducing other technologies such as cryopreservation may be beneficial to link 

year classes and create families improved for all traits each year. 

143. Primarily four-year old (three-year old from 2005) Atlantic salmon (male and female) are used as 

broodstock globally; however, individuals may be used in the breeding nucleus as young as two and as old 

as seven. In addition, Atlantic salmon can be reconditioned and spawned one or more times to contribute to 

the breeding program. A common practice in breeding programs is to use fish in their fifth year that did not 

mature as four-year olds (referred to as “silvers”) to provide an additional means to link year classes. 

However, use of fish older than four years of age is usually kept to a minimum as older broodstock become 

very large with associated handling difficulty during spawning and cost considerably more given the 

additional time to feed and maintain. 
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144. No two breeding programs appear to be alike in the approach taken to identify the best 

performing individuals in the breeding nucleus and subsequently create the next generation crosses or 

families. To generalise, most breeding programs use selection methodology that has been adopted and 

adapted from the livestock industry where each generation of data is added to the previous generation 

(e.g. a fish is selected based on its individual performance, family performance, parental performance, 

etc.). To this end, a combined selection method is typical and considers the merits offered by both the 

individual and the family to estimate a breeding value (EBV) for a particular trait. Traditionally, some 

traits could not be evaluated directly on the individual if basing selection from phenotypes, such as 

resistance to a particular disease that requires sacrifice of the challenged individual. In this case, the use of 

family information is necessary. It is now also possible to select an individual for resistance to a particular 

disease based on that individual’s genotype or genetic makeup. However, identifying quantitative trait loci 

(QTLs) and using marker assisted selection (MAS) or genome-wide assisted selection (GWAS) is not yet 

available for all desired traits. Many breeding programs are either working to obtain genetic markers for 

selection or continue to use phenotypic selection unable to afford these new technologies. Regardless of 

the approach or methods used all breeding programs strive to maintain as much genetic diversity as 

possible within the broodstock in their breeding nucleus/nuclei. 

145. The sex of future broodstock is typically identified one or more years prior to spawning either by 

use of ultrasound or a molecular marker. Broodstock are anesthetised before being stripped manually, bled 

and then gonads removed, or compressed air may be used with females (this allows eggs to flow freely 

when ripe). Broodstock are often culled either before or after gametes are obtained for fish health sampling 

to occur. Broodstock are health tested throughout production, but health testing individual fish after using 

their eggs or milt (seminal fluid) allows for confirmation of negative results for specific pathogens or 

diseases. Sometimes broodstock are reconditioned after spawning for future use. Crosses are made to 

create families after gametes are obtained either fresh or previously acquired milt that was cryopreserved 

and thawed for use. Crossing for the breeding nucleus will typically include some level of relatedness that 

aides in the removal of environmental effects during data analysis. It is more common for a male to be 

used with more than one female to create half sibling links. However, various strategies based on this 

general method of crossing are used globally. See Gjedrem (2000), Lutz (2001), Gjedrem and Baranski 

(2009), and Gjedrem (2010) for additional information on selective breeding including reference to marker 

usage. See Liu (2011) and Saroglia and Liu (2012) for specific reference to the use of sequencing and 

genomics in aquaculture. 

11.1.1. Physical environment (tanks, nets, cages, etc.) and containment conditions  

146. Broodstock are maintained in various different environments. Some broodstock are held in 

freshwater tanks throughout their entire life cycle or may be smolted and maintained in saltwater tanks 

(less common). Regardless of whether tanks use fresh or salt water, the water is more often being recycled 

in reuse or recirculating systems. The same families are typically also stocked into saltwater cages where 

the breeding nucleus is held on land in tanks to compare family performance either between fresh and salt 

water and/or between tanks and sea cages. The broodstock nucleus may also be reared in sea cages using 

standard commercial conditions in various broodstock programs globally. Broodstock maintained in sea 

cages are typically transferred back to freshwater anytime from several months to a week prior to 

spawning. In the past, broodstock may have been selected and stripped directly from sea cages, but this 

now occurs to a lesser extent. 

11.1.2. Rearing environment (water flow, D.O., temperature, lighting/photoperiod, etc.) 

147. Following broodstock stripping, crosses or families that have been created in a pedigreed 

breeding program are either: 
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a) maintained separately prior to individual fry tagging with a passive integrated transponder (PIT 

tag) then followed by mixing and communal rearing, or 

b) fertilised eyed eggs are mixed in equal numbers to create a breeding nucleus/nuclei that are 

communally reared from that point forward. These unmarked communally reared progeny must be 

later PIT tagged and fin clipped to identify parentage using markers. 

148. Using the former strategy, PIT tagging generally occurs in individuals that are five to 20 grams in 

size. PIT tagging and fin clipping of individuals in communal rearing situations may occur more than a 

year after production began, but sometime prior to spawning as family assignment is key for progeny 

evaluation. Herbinger et al. (1999) discuss performance variation between single family tanks versus 

mixed family tanks. Sonesson et al. (2010) discuss the potential for use of communal rearing of families 

and DNA pooling in genomic selection schemes. 

149. Broodstock located in tanks or cages are maintained similarly to Atlantic salmon that are grown 

for production (see associated sections below). However, broodstock will likely experience additional 

handling as assessments occur throughout the growing period. Future broodstock (progeny in a breeding 

nucleus) may undergo a numerical standardisation, for example, once they are on dry feed to better ensure 

a similar environment across all families as populations remaining within individual family tanks may vary 

based on initial survival. These fish will also be PIT tagged and/or fin clipped at some point as previously 

mentioned. In addition, measurements are expected to occur throughout production/growth. Pathogen 

challenges might occur based on the program traits of interest. In such a challenge, a portion of Atlantic 

salmon from all or a subset of families are either directly injected intraperitoneally with a pathogen 

(e.g. Renibacterium salmoninarum) or passively exposed to the pathogen in the environment 

(e.g. Renibacterium salmoninarum co-habitation model, sea lice). Many pathogen challenges will occur in 

a biocontainment facility and these salmon cannot subsequently be used as broodstock after testing. 

Sometimes, the salmon broodstock may be exposed to a pathogen in the rearing environment and the 

associated mortality data might also be useful to the broodstock program if the families are known. 

150. Photo (light) and thermal manipulation is common when attempting to either advance or delay 

spawning (see below). Exact details on photo and thermal manipulation are specific to individual 

companies and are, to some extent, a refined approach over time. Broodstock are photo-advanced to supply 

eggs earlier to growers than would be available on a natural cycle or photoperiod. Photo-delaying 

broodstock helps to produce eggs later than would normally be available. Advancing production, spawning 

naturally and delaying production is completed for various reasons. This can allow an egg producer to 

produce eggs almost continuously for variable desires of growers. Altering spawning time can also help a 

hatchery that might have limited egg incubation space.  

151. In general, salmonids are annual autumn/winter spawners (Billard et al., 1981) and mainly rely 

on seasonal cues to entrain the gamete maturation and spawning cycle. Photoperiod is the main driving 

factor but when coupled with temperature the three main phases of reproduction become synchronised: 

induction of oogenesis, vitellogenesis and the concluding stages of maturation (ovulation and gamete 

release) (Wang et al., 2010). While most work on photoperiod manipulation of spawning salmonids has 

been completed on rainbow trout it has proven to be a useful model for Atlantic salmon (Bromage et al., 

2001; Taranger et al., 1998). In general, salmonids are induced by an increasing photoperiod, but it is the 

timing and the relative change in daylight hours (i.e. increasing or decreasing from a previous history) that 

is more important than amplitude and rate of change (Randall and Bromage, 1998). A decrease in the 

photoperiod following induction affects the rate of gametogenesis and synchronisation (Duston and 

Bromage, 1998; Taranger et al., 1998; Bromage et al, 2001; Davies and Bromage, 2002). Without the 

decrease in day length at the appropriate time small numbers of females will actually spawn in advance and 

most may delay spawning. Advanced photoperiod reduces the time available for gametogenesis as long as 

water temperature does not inhibit the process which results in a reduced time in which eggs can sequester 
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yolk and in a lower oocyte developmental competence (Migaud et al., 2013). For rainbow trout, 

photoperiod advanced spawning can induce significant egg quality defects with transcriptome analysis 

identifying six genes significantly less abundant in photoperiod manipulated eggs than control eggs 

(Bonnet et al., 2007). In males, spermatogenesis and sperm quality are also affected, but to a lesser extent 

than egg quality. 

152. Temperature does not play a role in the induction of oogenesis for salmonids but does have 

critical importance in the subsequent stages of gametogenesis (Wang et al., 2010). Temperature is 

acknowledged as an important environmental parameter affecting the reproductive development and the 

timing of spawning of fish.  In salmonids, both low (Nakari et al., 1988) and high temperatures (Taranger 

and Hansen, 1993; Pankhurst et al., 1996; Pankhurst and Thomas, 1998; King et al., 2003) have been 

observed to restrict or inhibit aspects of reproductive development. Temperature exerts fine tuning as cue 

to spawn and timing of spawning, compensating for temperature differences year to year, preventing 

spawning at high water temperatures, and consequently at a time when food would be scarce for alevins in 

the wild (Taranger and Hansen, 1993). Warm temperatures in late summer and early autumn can therefore 

be the environmental bottleneck to achieving forward phase shifts in the reproduction of Atlantic salmon 

(Taranger and Hansen, 1993; Taranger et al., 1998; Bromage et al., 2001).  

153. As temperature is known to affect reproductive development and timing of spawning, 

temperature alterations just prior to spawning are typical and routinely completed when possible in a tank 

setting regardless of photoperiod manipulation with the thought that the changes accelerate ovulation and 

sperm release. Taranger et al., (2000) reported that exposure to reduced water temperatures (approx 5°C 

below natural) both synchronised and advanced ovulation in Atlantic salmon. One methodology, for 

example, is to drop the ambient water temperature to 6-8°C approximately 4-6 weeks prior to the expected 

start of spawning. 

154. Hormone stimulation is a useful management tool to enhance or synchronise ovulation or 

spermiation of a group of broodstock to provide the ability to manage large egg batches over the spawning 

season (e.g. stimulating those broodstock which might spawn later to spawn earlier during a peak) or when 

conditions such as temperature are suboptimal (King and Pankhurst, 2007; Taranger et al., 2003). 

Gonadotropin releasing hormone analogue (GnRHa) is a common hormone studied and the active 

ingredient of commercially available Ovaplant® or Ovaprim® (Syndel Laboratories Ltd.). Sustained 

release implants have been used to synchronise and advance ovulation in Atlantic salmon (Crim and Glebe, 

1984; Mylonas et al., 1995; Taranger et al., 2003). The successful dose for Atlantic salmon is reported to 

be 50 µg per kg (Taranger et al., 2003). Male broodstock generally respond to hormone implants with 

increased sperm production. However, female broodstock results can be more variable. 

155. The vast majority of Atlantic salmon produced globally are diploid mixed gender. Research has 

been conducted on the production of all female broodstock and triploid progeny (see Biocontainment). The 

primary reason to produce triploid all female progeny for commercial production is to eliminate the 

opportunity for maturing production fish prior to harvest. Other methods are available to successfully 

manage early maturation, such as using lights in sea cages (see section below) and through trait selection 

within a broodstock program. 

11.1.3. Fish sizes, densities, growth rates 

156. Individual Atlantic salmon within a broodstock program are reared similarly to those in 

production tanks or cages; however, whenever possible, densities are kept lower compared with production 

fish. A production hatchery might allow its density to be as high as 80-100 kg/m
3
 but the density for a 

future broodstock tank will likely be lower. As the fish grow, the broodstock density will likely be 

maintained as low as 25 kg/m
3
 and as high as 40 kg/m

3
 (depending on the broodstock program, tank sizes 
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and conditions, etc.). Density data varies between companies farming Atlantic salmon and is often not 

information that is publically shared or available. 

157. The size at smolting Atlantic salmon, growth rates and feed conversion rates are all company 

information that is proprietary. However, feed itself makes up more than 60% of the cost of production 

(Gjedrem, 2010). Feed conversion rate (FCR) is difficult to accurately assess and is also very expensive to 

measure directly on individual fish or indirectly on family groups, but it is widely known that carnivorous 

fish, such as Atlantic salmon, are quite efficient in converting energy and protein to edible food for humans 

with a FCR of approximately 1-2 and yielding about 57 g of edible meat per 100 kg of feed (Marine 

Harvest, 2014). The genetic correlation between growth and feed conversion ratio in Atlantic salmon is 

documented to be high, ranging from 0.60 (Kolstad et al., 2004) to 0.90 (Thodesen et al., 1999) and likely 

falls somewhere in between these two values. This genetic correlation means that as the salmon are 

selected to grow faster (improvements expected of up 10-15% in growth per generation (Gjedrem, 2010), 

they should also be achieving better FCR’s, which means the fish population will consume less feed per kg 

of fish produced. 

11.1.4. Feeds (types, sources, composition) and feeding (rates, methods) 

158. Atlantic salmon nutritional requirements are well known following years of research resulting in 

all stages of production being fed a balanced diet of formulated extruded feed. Broodstock typically 

consume all the same diets as production fish (see other sections for more details) until a minimum of one 

year prior to maturation when the diet switches from a production diet to one formulated to maximise the 

quality of developing gametes. Broodstock diets have increased levels of protein and fat, but oil content 

and make-up may be lower (e.g. only fish oil as the lipid source). The broodstock diet also has elevated 

quantities of astaxanthin, selenium, vitamins C and E, and Beta-glucans to activate macrophages to 

generally combat infection. 

11.1.5. Diseases, pathogens, and parasites – General concepts for all life stages 

159. In any discussion of diseases, it is very important to remember that the presence of a parasite or 

pathogen does not equal disease. A disease is a physiological condition of an organism that can be directly 

(or indirectly) caused by a pathogen, parasite, genetic anomaly or an environmental factor (e.g. low 

oxygen). It is incorrect to say “a disease was transferred from one organism to another...” A pathogen was 

transferred and a disease may/may not develop. Consider the Venn diagram below, disease could occur in 

the small region where pathogen, host and environment all overlap. The environment acts on host and 

pathogen, but only when conditions favour the pathogen and debilitate the host, could a disease occur. 

Figure 5. Disease triangle 

 

The disease triangle is a conceptual model that 

shows the interactions between the environment, 

the host and an infectious (or abiotic) agent. This 

model can be used to predict epidemiological 

outcomes in plant, animal and public health.  

Disruption or change in one or more of the three 

elements may impact the outcome of the 

interaction. 
 



 ENV/JM/MONO(2017)64 

 49 

160. Another important aspect to consider in any discussion of disease is diagnostics. Diagnosis 

usually begins with observation (e.g. abnormal colour, behaviour), then microscopy is used, followed by a 

combination of culture techniques (e.g. bacteria media plates), serological techniques (IFAT – indirect 

fluorescent antibody technique, ELISA – enzyme linked immunosorbent assay) and genetic testing 

(polymerase chain reaction - PCR, quantitative-PCR). One caveat is to never make a diagnosis on visible 

symptoms alone. Fish exhibit many similar symptoms for a variety of pathogens. It is essential to properly 

and accurately diagnose which pathogen is present, especially with regards to regulatory implications (e.g. 

fish transfer, local therapeutic protocols, etc.). For example, many viral and bacterial pathogens can be 

detected in a fish by the use of a standard molecular technique such as PCR. However, a PCR analysis only 

gives a genetic signal that the pathogen is present, it does not indicate if it is viable. Similarly IFAT and 

ELISA methods use antibodies labelled with a fluorescent dye to detect presence of an antigen signal 

(e.g. part of a bacterium cell wall). Theoretically, PCR and antibody based testing could give a ‘positive’ 

result of a pathogen in a sample even if there were dead copies of the cell (or virus particle) present. For 

example, renibacterium salmoninarum antigen can persist for several months following vaccination with a 

killed preparation (Pascho et al., 1997). For some pathogens, it is also important that specific diagnostic 

tests distinguish between pathogenic and non-pathogenic strains in a particular host. For instance, the 

HPR0 strain of the ISAV - infectious salmon anemia virus - is considered non-pathogenic 

(Christiansen et al., 2011) and various subspecies of bacteria (e.g. Aeromonas salmonicida subsp 

achromogenes vs. A.s. subsp salmonicida) cause different pathologies in the host (Austin and Austin, 

2007). Specific identification of a pathogen by either direct (culture) or indirect (e.g. PCR or antibody-

based) methods indicates that the pathogen (or part of the pathogen) is present; however, this is not 

sufficient evidence to conclude a disease condition exists among a population since a pathogen can be 

present in the absence of disease. 

161. As a result of variations in reliability of diagnostic tests, many countries follow international 

diagnostic standards of the OIE (World Organization for Animal Health, http://www.oie.int/) for any 

regulatory diagnoses. Standardisation ensures all compliant labs are following the same protocols such that 

diagnostic results can be accurately compared among countries. For most pathogens and some parasites, 

part of the standard diagnosis involves culturing the organism to demonstrate its viability. 

162. Diseases, pathogens, and parasites of any type are of special concern for broodstock as they can 

result in loss of individual broodstock prior to spawning, which reduces the ability to produce the next 

generation. Pathogens may also result in the loss of entire families thereby reducing the genetic variability 

and potential genetic contribution to future generations. Positive results with either the dam or sire from 

health testing post-spawning may also result in the removal of progeny. A disease requiring eradication of 

a group of salmon (e.g. tank, sea cage, year class) can be particularly devastating if/when it occurs in the 

breeding nucleus where top performing individuals in a year class are maintained. These risks provide 

sufficient reason to maintain multiple breeding nuclei in different locations and possibly in different 

environments (i.e., land-based tanks may be better at keeping pathogens out through disinfection, but sea 

cages are easier to treat and remove pathogens after they are introduced).   

163. There are two methods in which diseases can be transferred between broodstock individuals and 

from broodstock to the progeny – vertical transmission and horizontal transmission. 

a) Vertical transmission is transfer of the pathogen from broodstock to progeny through the egg or 

milt. Vertically transmitted diseases are of special concern as such agents may spread quickly 

through the entire industry if they are introduced into broodstock. Vertical transmission is 

minimised through strict health testing regulations globally. Broodstock populations may be 

terminated for testing positive or a broodstock fish might be removed prior to egg fertilisation or 

fertilised eggs may be removed from a facility prior to hatching. 
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b)  Horizontal transmission is the transfer of a pathogen or parasite through the environment or 

water column. Horizontal transmission can be minimised by using strict biosecurity measures 

(e.g. on land use of footbaths, handwashes, no shared equipment between year classes or even 

tanks, year classes on different sites if broodstock are located in sea cages, etc.).  

164. The transmission mode of pathogens and parasites is very important. The Norwegian Scientific 

Committee for Food Safety (VKM) has considered the possibility of vertical transmission (from egg or 

milt to progeny) of some important diseases (http://www.vkm.no/dav/139e8a18ad.pdf). True intra-ovum 

vertical transmission is well documented for Renibacterium salmoninarum (causative agent of bacterial 

kidney disease in salmon) (Evelyn et al., 1984). For Infectious Salmon Anaemia virus (ISAV) it was 

concluded that vertical transmission cannot be excluded, but is of little importance for spread of ISAV. 

Pancreas Disease (PD) is not considered a vertically transmittable disease, and for Heart and Skeletal 

Muscle Inflammation (HSMI) there is insufficient information to form the basis for an assessment. 

Infectious Pancreatic Necrosis virus (IPNV) is considered to transmit vertically. There is indirect evidence 

for vertical transmission of IPNV in Atlantic salmon, and this occurs in several other species of salmonids, 

with current disinfection procedures insufficient to prevent this. 

165. Once a closed population has been identified as being free of particular pathogens, there is no 

risk of vertical or horizontal transfer within that population. However, pathogens are often present within 

the host watershed or water body and pumped into a land-based facility or the water passes through a sea 

cage, respectively. Pathogens in the water column are typically easier to remove with broodstock on land 

as water is likely mechanically filtered and disinfected using ultraviolet irradiation (UV) and/or ozone. 

Pathogens in the water column passing through sea cages are impossible to remove, but still might not 

cause an issue. If a cage of fish is healthy and located in favourable environmental conditions in a stress-

free low density setting, then the likelihood of horizontal transfer from the environment decreases. Various 

diseases are also included in selective breeding programs that will also decrease the likelihood for an 

outbreak of a particular disease in a sea cage. An excellent example of using selective breeding to reduce 

mortality resulting from disease is that of Infectious Pancreatic Necrosis (IPN). When farms chose IPN 

resistant QTL (Moen et al., 2009) selected stock the number of IPN-diagnoses was reduced from 47% in 

2009 to 7% in 2010 while IPN outbreaks were not reduced in those year classes on sites using non-QTL-

selected stocks – 36% outbreaks in 2009 with 43% outbreaks on the same sites in 2010 

(http://aquagen.no/en/). Similarly, several reports document attempts at using breeding selection of 

Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon to improve resistance to BKD 

(Beacham and Evelyn, 1992; Withler et al., 1990) 

166. Not all pathogens and parasites affecting Atlantic salmon production are an issue globally. 

However, transfer of any pathogen or parasite is of global concern (Table 4).  
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Table 4.  Pathogens and parasites recorded in Atlantic salmon  

Common Name Scientific Name, 

Causative agent 

Major route of 

transmission 

Present Country 

Amoebic Gill Disease 

(AGD) 

Neoparamoeba/ 

Paramoeba perurans 

H SW Australia, New Zealand, United 

States, France, Spain, Ireland, 

Chile, Scotland 

     

Bacterial Coldwater 

Disease (BCWD) 

Flavobacterium 

psychrophilum 

H, V FW, SW Norway, Canada, Australia, Chile, 

British Isles, United States 

Bacterial Kidney Disease 

(BKD) 

Renibacterium 

salmoninarum 

H, V FW, SW Global 

 

Ceratomyxosis 

Ceratonova 

(Ceratomyxa) shasta 

H FW Canada, United States (West Coast) 

Cardiomyopathy 

syndrome (CMS) 

Piscine myocarditis 

virus (PMCV) 

H SW Norway, Ireland 

Columnaris disease Flavobacterium 

columnare 

H FW Global 

Enteric Redmouth 

Disease; Yersiniosis 

Yersinia ruckeri H FW Canada, Norway, United States 

(West Coast) 

Erythrocytic inclusion 

body syndrome (EIBS) 

virus 

Unknown H FW, SW British Isles, Ireland, Norway, 

Scotland, United States (West 

Coast) 

Furunculosis Aeromonas 

salmonicida 

salmonicida 

H FW, SW Global 

Furunculosis, atypical Atypical Aeromonas 

salmonicida 

H FW, SW Canada (Newfoundland), Iceland, 

Chile,  

Gyrodactylosis Grydactylus salaris H FW Norway, Northern Europe 

Heart and Skeletal Muscle 

Inflammation (HSMI) 

Associated with Piscine 

orthoreovirus (PRV) 

Likely H FW, SW Norway, Scotland 

Ichthyobodosis Ichthyobodo necator 

(stricto) (s.s.)  

H FW Global 

Ichthyobodosis Ichthyobodo salmonis 

(sp. II) 

H FW, SW Global 

Infectious Hematopoietic 

Necrosis (IHN)  

Infectious 

Hematopoietic 

Necrosis Virus (IHNV) 

H FW, SW Canada (West Coast), Europe, 

United States (West Coast) 

Infectious Pancreatic 

Necrosis (IPN)  

Infectious Pancreatic 

Necrosis Virus (IPNV) 

H, V FW, SW Canada, Chile, Norway, Scotland, 

United States 

Infectious Salmon 

Anaemia (ISA)  

Infectious Salmon 

Anaemia virus (ISAV) 

H FW, SW Canada (East Coast), Chile, 

Norway, U.S. (East Coast) 

Microsporidosis Loma salmonae/ 

Desmozoon 

lepeophtherii/ 

Paranucleospora 

theridion 

H SW Norway, Scotland, Canada (Loma) 

Mycotic nephritis 

(fungus) 

Exophiala spp. H  Norway 

Myxosporean (parasite), 

Kudoa disease 

Kudoa thyrsites H SW Canada (West Coast), Ireland, 

Spain 

Parvicapsulosis Parvicapsula 

pseudobranchicola 

H SW Canada, Chile, Norway, Scotland 

Pancreas Disease (PD) Salmonid alphavirus H SW Europe 
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(SAV) 

Piscirickettsiosis, 

Salmonid Rickettsial 

Septicaemia (SRS) 

Piscirickettsia salmonis H FW, SW Canada, Chile, Ireland, Norway 

Phagocytolytic syndrome 

(PCLS) 

unknown;  viral 

aetiology suspected 

H FW, SW Ireland, Scotland 

Proliferative kidney 

disease (PKD, formerly 

PKX) 

Tetracapsuloides 

bryosalmonae 

H FW North America, Western Europe, 

mainly affects rainbow trout 

Pseudomonas fluorescens Pseudomonas 

fluorescens 

H FW Norway 

Saprolegniasis, Fungus Saprolegnia spp. H FW Global 

Sea Lice Lepeophtheirus 

salmonis, Caligus 

elongatus,C. clemensi 

H SW Canada, Ireland, Scotland, Norway, 

United States 

Sea Lice Caligus rogercresseyi H SW Chile 

Tapeworm (parasite) Eubothrium spp. H  Canada (East Coast), Norway 

Varracalbmi Bacterium related to 

Pasteurella skyensis 

H SW Norway, Scotland 

Vibriosis Vibrio anguillarum, V. 

ordali 

H SW Global 

Vibriosis, coldwater Vibrio salmonicida H SW Global 

Viral Hemorrhagic 

Septicaemia (VHS) 

Viral Hemorrhagic 

Septicaemia Virus 

(VHSV) 

H FW, SW Global, identified in > 80 fish 

species 

Whirling disease Myxobolus cerebralis H FW United States (Alaska, West Coast, 

central and East), Europe 

Winter ulcer Moritella viscosa H SW Norway, Canada, United States 

Mouth rot, fin rot Tenacibaculum 

maritimum 

H SW Norway, Canada, United States 

Other bacterial infections 

(typically opportunist) 

Vibrio, 

Photobacterium, 

Alteromonas, 

Pseudoalteromonas, 

Phychrobacter, 

Polaribacter 

  Global 

Note: There are various methods of transfer such as horizontal – H – from wild to farmed fish, from farmed to farmed 

fish, etc. or vertical – V – from broodstock to progeny. In some cases, the exact method of transfer might be unknown 

(U). 

Pathogens and parasites may also be present in only a freshwater (FW) or saltwater (SW) environment. 

Information from personal communications with industry individuals and see also: Aamelfot et al., 2014; 

Brown, 1994; Declercq et al., 2013; Fryer and Hedrick, 2003; Garseth et al., 2013; Graham et al., 2002; Kent and 

Poppe, 1998a; Kent et al., 1995; Kibenge et al., 2004; Isaksen et al., 2011;  Marty et al., 2014; Merck, 2015; Meyers 

et al., 2007; McLoughlin and Graham, 2007; Nash, 2001; Nematollahi et al., 2003; Nilsen et al., 2011; Olsen et al., 

2011; Shaw et al., 2000; Tobback et al., 2007; Veterinærinstituttet, 2013; Woo, 2006; Woo, 2010; Woo and Bruno, 

2011; Woo et al., 2002. 
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11.2  Hatchery rearing of eggs and fry 

11.2.1. Physical environment (tanks, nets, cages, etc.) and containment conditions  

167. Fertilised eggs are very fragile and must not be handled until the eyed egg stage, at 

approximately 220-250 degree days, when the eyes of the larvae can be seen through the eggshell. Eyed 

eggs can tolerate handling and dead eggs are sorted from live eggs at this stage. This is typically completed 

using an automated egg picker for production; however, if the eyed eggs are part of the broodstock 

program this might be completed by hand to ensure no mixing of eggs between families.  

168. Rearing systems for the egg stages vary according to the stage at which the Atlantic salmon will 

be transferred to another system for further grow-out. There are many types of egg incubators. A 

commonly used style is the vertical egg incubator, which stacks numerous trays vertically to use a 

relatively small amount of floor space (e.g. Marisource and CompHatch; Figure 6 and Figure 7). These 

commercially available units are designed to maximise the number of eggs per square foot of space with 

high water quality, lower levels of fungus, and cleaner hatching environments. Hatching jars have been 

used for decades, but recently modified to accommodate a higher number of eggs in commercial settings. 

Hatching jars can be used individually (Figure 8) or as a system (see www.puriaquamarine.com) and the 

design allows gentle rotation of incubating eggs without concussion. Salmon can hatch in jars, but must be 

moved before first feeding. See also reviews by Saunders (1995), Robson (2006), and Anderson (2007) for 

additional information and illustrations. 

Figure 6. Marisource 8-tray vertical incubator for salmon 

 
 Source : marisource (https://www.marisource.com/featured/marisource-8-tray-vertical-incubator-for-salmon.html) 
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Figure 7. CompHatch hatching system illustration demonstrating the inclusion of a work lift 

 
 Source : alvestad (http://alvestad.com/Engelsk/Comphatch.html). 

 

 

Figure 8. Picture of a hatching jar sold by Pentair 

 
     Source : pentairaes (http://pentairaes.com/hatching-jar-and-hanger.html). 
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169. Combi tanks are a complete hatchery system designed for all stages: hatching eggs, first feeding 

fry and juvenile stages (Figure 9). This tank system initially uses a shallow insert with a square egg tray. 

Inflow can be at the surface or bottom of the tank, but water can only exit through a centre standpipe after 

upwelling through the eggs. As fish grow the shallow insert can be removed to give the salmon more 

volume to occupy. This system is available in different sizes with perhaps the most common size having a 

1 m diameter tank. 

Figure 9. Combi tank designed for fertilised and hatching eggs, first feeding fry and juvenile stages of 

Atlantic salmon 

 
Source : pentairaes (http://pentairaes.com/combi-tanks.html). 

170. Less commonly used are hatchery troughs (Figure 10). They allow an easy survey of eggs, but 

require a larger footprint per number of eggs/fry. The trough is 5 m long and houses up to 7 baskets. These 

can be used until the first feeding fry stage when fry are moved to feeding tanks thereby allowing less 

developed alevins more time to absorb the yolk-sac in clean water. First feeding can occur in the trough. 

Figure 10.  Standard hatching trough that may be used for Atlantic salmon egg to first feeding fry stage 

 
Source : aquaculture (http://www.aquaculture-com.net/bilder/brutrinnen.jpg) 
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171. The most common environment for fry rearing after the first feeding stage is circular fibreglass 

tanks. Every farm or hatchery will have different demands for tank size and first feeding tanks can range 

from 0.1 m
3
 to 10 m

3
 in volume. Juvenile rearing can occur in tanks up to 50 m

3
 but using larger tanks is 

not typical practice for these early life stages. This is due to the flow index, which refers to the relationship 

of the fish weight and size to water inflow (Piper et al., 1986). Salmon must be able to handle the required 

turnover rates for the size of the tank. Large rearing units require high incoming water amounts and small 

fish cannot handle the velocity that is required to keep the oxygen levels and water exchanges at standard 

levels. 

172. Although most hatchery facilities currently use flow-through water systems, there is increasing 

use of recirculating aquaculture systems (RAS) for rearing of Atlantic salmon, particularly early life stages 

(i.e., eggs, fry, and pre-smolt). Recirculating systems are those that typically recycle or reuse most of the 

water used within the system, typically 90% or more, and sometimes as much as 99+% of the water. There 

are several potential advantages for use of RAS in fish culture including: 1) water conservation (reduced 

water requirements), 2) enhanced environmental control (particularly temperature, oxygen, and pH), 

3) enhanced biosecurity and disease control, 4) reduced land needs (due to higher stocking densities), and 

5) greater site selection flexibility (independence from water source). Use of RAS also reduces the 

potential for eggs and fish to escape because most of the water within the system is routed internally 

through biofilters and other equipment used to removed solids and ammonia. 

11.2.2. Rearing environment (water flow, D.O., temperature, lighting/photoperiod, etc.) 

173. Optimal water flow is based on life stage and rearing environment. Vertical egg incubators 

typically require 4-25 lpm per stack with 4-10 lpm adequate up to the eyed egg stage. If the incubators are 

used for hatching, then water flow should be increased to a minimum of 8-15 lpm after 400 degree days 

and up to 25 lpm. The precise flow chosen for each incubator will depend on the required turnover for the 

density of the stack of trays. Jar incubators require different flows depending on the weight of eggs 

included. The minimum flow is 3.78 lpm, but this can be increased up to 15 lpm as required. Combi tanks 

start at 2 lpm and slowly increase as fish grow or there is an increase in oxygen demand. Flow should 

increase to 4 lpm for alevin and 6-8 lpm when salmon are free swimming and actively eating. The target 

water flow for combi tanks when the shallow insert is removed is to have water turn-over every 45-

60 minutes. Troughs range from 10-25 lpm with flow increased as more baskets are added.  

174. Oxygen demand is very low during egg incubation and increases as salmon grow. Oxygen uptake 

across the fish gills depends on the gradient of numerous parameters between the internal fish and external 

environments. Oxygen tension depends not only on the concentration of O2 in the water, but also on other 

physical and chemical properties such as temperature, atmospheric pressure and salinity (Pennell and 

Barton, 1996). The saturation level will determine the ability of the water to hold oxygen and influence the 

total gas pressure. The percent saturation determines the ease of transfer through the gills into the 

bloodstream and changes with temperature. As temperature increases, the ability of water to retain O2 

decreases. At high temperatures oxygen levels are kept at the lower end of the optimal concentration level 

to keep saturation levels under 130%. If saturation levels increase then total gas pressure will reach 

detrimental conditions. Optimal O2 concentration for Atlantic salmon is between 8.5-11 mg/l. Salmon will 

survive in oxygen concentrations of 6-8.5 mg/l, but metabolic response will decrease and overall health can 

be compromised. Under 6 mg/l is not advised and acute mortality is apparent at dissolved O2 

concentrations between 1 and 3 mg/l (Piper et al., 1986). 

175. Water temperature will vary depending on the season or system. This parameter is one of the 

most important controlling factors for food conversion rates, growth and metabolite production. The 

optimal temperature range for egg rearing is 6-8°C, for the alevins this can be increased to 12°C, and after 

Atlantic salmon are free swimming the temperature can be safely set up to 15°C (discussion of thermal 
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tolerance can be found in Elliott, 1991; see also Saunders, 1995). However, it is very important to monitor 

water quality closely at high temperatures as changes in organic loading can rapidly affect fish health. Egg 

development is the easiest to manipulate by controlling water temperature as the total time required to 

hatch is based on degree days (approximately 450) allowing easy prediction as water temperature is 

controlled. In this manner, egg development may be delayed to hatch by incubating at lower water 

temperatures. When water temperature is manipulated it is best to raise or lower by 1
o
C per day. If it is 

necessary to adjust the water temperature quickly then doing so at a rate of no more than 1
o
C per hour is 

permissible for eggs, fry, and juveniles. Total gas pressure should always be monitored closely when water 

is heated. High water temperature and heat shock are both contributing factors to increase the incidence of 

deformities in Atlantic salmon (Wargelius et al., 2005; Takle et al., 2005). For industry, start of first 

feeding is often between 900 and 1000 degree days, but can be as low as 800-850 degree days. Alevin 

stage is from hatch to no yolk or approximately 450-900 degree days. Fry stage is considered when salmon 

are swimming freely and the swimbladder is filled or >900 degree days to parr/smolt (see Figure 11). All 

degree days discussed are in Celsius. Temperatures considered optimal and variations in degree days will 

vary to some extent based on citation, hatchery, etc. 

Figure 11.  One example of a production cycle for Atlantic salmon including both freshwater and 

seawater phases 

 
 Source : FAO, 2014  

176. Water quality parameters will vary depending on the degree of water reuse (i.e., flow through or 

recirculation) and source of the incoming water (i.e., whether from a lake, well or municipal source). 

Incoming water can have lethal or supply subpar water chemistry and may need to be treated before 

entering a rearing tank. Suboptimal freshwater pH is common with incoming water supplies, and this may 

cause issues such as delayed egg hatching in low pH (Petersen et al., 1980). Ideally pH should remain near 
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7.0, but eggs can handle a range of 6.5 to 8.0. If the incoming water is low or high in pH then a buffer may 

be required and a dosing system may be used to provide the optimal pH levels. Regardless of the method 

used it is important to maintain stable pH levels when buffering the water for proper egg development. A 

slightly high or low pH level that is consistent is preferable to one that frequently fluctuates.  

177. Control of light intensity and photoperiod varies as Atlantic salmon develop. There is no 

photoperiod from fertilisation to the eyed egg stage. Eyed eggs and hatched yolk-sac alevins are typically 

maintained in little to no light. However, older alevin or fry at about 900 degree days are transferred to 

rearing tanks and photoperiod is switched to 24 hours of dim lighting during first feeding. Light intensity 

increases at approximately 1 200 degree days after ‘pin-heading’ is no longer considered a potential issue 

(see additional information below). Use of 24 hr photoperiod can continue until the winter period, typically 

January to March in the northern hemisphere, at which time an 8 or 12 hour dark period is introduced. The 

winter period needs to be a minimum of 6 weeks before the salmon can return to 24 hour lighting or 

remain on ambient photoperiod. The exact light regime experienced after the required winter period will 

depend on the timing of and amount of weight gain required before smoltification. 

11.2.3. Fish sizes, densities, growth rates 

178. Eyed egg densities range per system. Vertical incubators hold approximately 10 000-360 000 

eggs through to hatch per tray depending on the model used. The total number of eggs possible in a 

specific footprint is scaled based on the number of trays stacked per unit (up to 2.8 million eggs per unit). 

A 6 litre hatching jar will hold up to 80 000 eggs to the eyed egg stage while a typical basket of a trough 

will hold up to 20 000 eggs, but numerous baskets will be present within each trough. Combi tanks hold 

the fewest number of eggs for the footprint (i.e., lowest density) with a 1 m tank holding approximately 

40 000 eggs. Eggs should be loaded in each of the systems at a greatly reduced total number if the operator 

plans to also hatch the eggs within the chosen incubation system (for instance, a 1 m combi tank should be 

stocked with only 20,000 eggs per shallow insert if hatching in the tank is desirable). Stocking density will 

affect the growth rates and overall health of Atlantic salmon as they begin to feed. Optimal conditions for 

fry are to maintain a stocking density of 30 kg/m
3
, but this is often pushed to 50 kg/m

3
. Stocking density 

should be high enough to ensure competition to stimulate feed response because fry that are stocked at low 

densities, such as less than 5 kg/m
3
, lose interest in food.  

179. Atlantic salmon egg size may vary but generally range from 0.1 to 0.4 g. Alevins grow as they 

absorb nutrients from the yolk sac. After the yolk-sac is absorbed and “buttoning up” occurs the alevin 

become fry and must start feeding to survive. Fry mortality rates significantly decrease after first feeding is 

successful and fry reach 1 g. Ongoing growth rates depend on many factors such as diet, husbandry, water 

quality and temperature. There are numerous growth models for Atlantic salmon at various life stages 

(Piper et al., 1986; Aunsmo et al., 2014) that are often available from commercial feed suppliers that will 

also take various factors into consideration such as desired size by a specific date and/or budgetary 

constraints. Atlantic salmon fry will transition to the fresh water grow-out stage after 10 g. See Piper et al. 

(1986), Heen et al. (1993), and Stead and Laird (2002) for additional information. 

11.2.4. Feeds (types, sources, composition) and feeding (rates, methods) 

180. Feeding is the single most important component and greatest cost item in commercial aquaculture 

operations. When salmon hatch they start to absorb their yolk sac, but the fry must begin to consume 

outside feed sources as the yolk-sac diminishes to survive. It is important to start the fish on a dry 

manufactured diet as the yolk sac reaches 3-5% of the total body weight. If this is delayed, then 

“pinheading” of the fry and eventual mortality may result. Feed rate starts at 6% body weight per day 

spread out over hourly feeding events during the 24 hr photoperiod if possible. Waste feed should be 

visibly apparent in each tank to ensure that all fry have access to feed but not large quantities of wasted 
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feed that may deteriorate water quality conditions. After salmon fry reach a size of 1 g, the feed rate will 

decrease to 4% body weight per day and this rate will continue to decrease as the salmon grow larger. 

181. Atlantic salmon hatcheries rarely use feed that is not a properly balanced diet manufactured by a 

professional feed mill. These manufactured diets start at a 0.3 mm crumble and increase in extruded pellet 

up to a 12 mm pellet. Fry start with the 0.3 mm crumble as the yolk-sac salmon begin to swim up and 

display an interest in foraging for food. At this time, the surface of the tank is lightly dusted to stimulate 

fry appetite. These starter feed diets are high in protein (52-58%) and (18-20%) lipids.    

182. Commercial Atlantic salmon diets vary to some extent based on the physiological needs of the 

salmon at different stages of the production cycle. Basic information on these diets can be obtained from 

the feed companies directly (e.g. Skretting or local representatives supplying the feed, 

http://www.skretting.com/). There also might be some variations in diets by country as well. There are 

several books dealing with the specifics of fish nutrition and specifically Atlantic salmon such as Lovell 

(1989) and Halver and Hardy (2002). Holt (2011) specifically references larval nutritional needs. 

11.2.5. Diseases, pathogens, and parasites 

183. There is always concern for potential disease impacts throughout the production cycle. Although 

many of the same pathogens are of concern regardless of life stage, there are some diseases that are more 

prevalent in the early stages. For example, in Norway, fungal infections (mainly Saprolegnia spp.) on eggs 

and fry (Bruno and Stamps, 1987; Woo, 2011) are the primary concern in the early stages of production. 

However, different types of gill pathologies with bacterial or environmental causes are not uncommon. In 

Canada, regional issues with viral hemorrhagic septicaemia virus (VHSV), Yersinia ruckeri (enteric 

redmouth disease), and Saprolegnia spp. are of particular concern for egg incubation and fry production. In 

Chile, only Saprolegnia spp. is reported to be of importance. 

184. Saprolegnia fungus (actually classified as a protozoan) is the most prevalent issue when 

incubating eggs and has an appearance of cotton mould that begins growing on dead eggs. The fungus is 

able to grow and reproduce fast under optimal conditions (high water temperature, elevated stocking 

density, dead and decaying eggs present), but can be controlled through good husbandry practices. Regular 

treatments typically with iodine-based disinfectants (e.g. Wescodyne™, Ovadine™) or diluted formalin are 

required after Saprolegnia is visible from the tank surface (Brown, 1994). Saprolegnia can continue to be 

an issue throughout early life stages, but only causes low level mortality when properly dealt with to 

prevent escalation of the issue. 

185. Bacterial gill disease (BGD) describes infections to fish gills caused by several different species 

of bacteria with the principle etiologic agent in Atlantic salmon being Flavobacterium branchiophilum. 

Salmon affected with BGD tend to orient themselves upstream toward the tank inlet as the gill lamellae are 

being suffocated. Gill covers are flared and can be seen from the surface and a heavy mucus layer will 

cover the gills. Salmon affected by BGD will be lethargic and often found lying on the tank bottom. 

However, as mentioned previously, never make a diagnosis based on visible symptoms alone. BGD is 

generally a result of inadequate husbandry leaving the tanks with excess organic matter. This is largely the 

result of poor water conditions from overfeeding. Acute mortality will occur without proper care and 

treatment.  

186. Gas bubble disease results from supersaturation of water and falls under the category of ‘non-

infectious diseases’ (Kent and Poppe, 1998a; Woo, 2010). The dissolved gas may leave the bloodstream 

and form air bubbles in the skin, organs, eyes or gills. This may be the result of sudden temperature 

gradients, especially warming the rearing water, or air entraining into the water typically from leaks in 

pumps or pipes. It can occur quickly in the larval salmon stages and salmon can darken as a result or 
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become blind. If this condition is not addressed acute mortality can occur. The first step to treating gas 

bubble disease is to immediately find and fix the issue causing supersaturation. Degassing within the 

production system to ensure a normal level of total gas pressure (under 102%) is maintained will prevent 

gas bubble disease. 

187. Furunculosis, the disease caused by the Gram negative bacteria Aeromonas salmonicida, can also 

occur during these early life stages (Woo and Bruno, 2011; Austin and Austin, 2007; Brown, 1994). 

Furunculosis is exacerbated by stress, low oxygen levels and high densities. Outbreaks occur most often at 

temperatures above 10°C, the disease is highly infectious and can cause acute infections with rapid onset of 

mortality. Disinfection of fertilised eggs is the most important intervention against furunculosis in 

hatcheries and this treatment is obligatory in Norway. Effective vaccines exist to prevent this disease, thus 

it is not considered a major problem to salmon farming anymore. 

188. Enteric red-mouth disease, ERM, is caused by the highly pathogenic bacterium Yersinia ruckeri 

(Woo and Bruno, 2011; Austin and Austin, 2007; Brown, 1994) This disease is also often a result of poor 

water quality. It can be evident as a chronic or acute infection as salmon seem to be able to withstand high 

numbers of the bacteria without developing the disease. However, if stress is introduced then salmon may 

show signs of reddening around the throat and mouth areas and will be lethargic and lose interest in feed. 

Fry are most susceptible to ERM. 

11.2.6. Drug treatments, vaccines, and usage of chemicals for cleaning and disinfection 

189. No injectable vaccines are used on fish below 10 g. However, there are a variety of dip vaccines 

available that are administered as static baths based on biomass and administered to salmon as small as 2 g. 

Dip vaccines require that the fry are placed into the dosed bath water for 15 to 60 minutes depending on 

the specific vaccine requirements. Commonly used dip vaccines treat against ERM and furunculosis 

infections as well as many others including various forms of Vibrio (Brudeseth et al., 2013).   

190. Egg surface disinfection 1-3 hours post-fertilisation is a common practice prior to laying the eggs 

down in their incubation environment. Ovadine™, containing 10% Povidone-Iodine, is frequently used as 

a surface disinfectant of fertilised eggs. Treatment may be completed during or after water hardening with 

the concentration and duration both adjusting the dose depending on the specific time of treatment. Egg 

surface disinfection delays the growth of fungus during the sensitive egg development stage when no other 

handling can be completed. These treatments coupled with removal of unfertilised dead eggs from the 

incubator should sufficiently retard fungal growth until the eggs have eyed allowing another treatment to 

occur. 

191. Baths treatments of formalin, an aqueous formaldehyde solution, are the most common treatment 

to control fungus from the eyed egg stage onwards. Formalin baths may be used several times a week with 

the dose changing based on a static (more diluted for a longer duration) or flow through (more 

concentrated for a shorter duration) treatment (Brown, 1994). Formalin treatments can start at 110 degree 

days and continue until the first alevin is seen and may then continue again after first feeding. Formalin 

may also be cautiously used as a diluted bath to treat fungus in larger salmon. Use of formalin is expected 

to be phased out in the near-future resulting in considerable research to find an alternative less toxic 

solution for use in hatchery environments. One alternative to using formalin is the use of salt in a static 

bath or flow through application multiple times each week.  

192. Hydrogen peroxide is another alternative to treat fungus and BGD. Eggs can be treated using 

500-1000 mg/l for 15 mins everyday if required until salmon hatch. When required for fry or juveniles 

a 100 mg/l dose can be used for 30 mins for 3 treatments every other day. Hydrogen peroxide is considered 

an environmentally friendly alternative as it slowly breaks down into its constituent parts of oxygen and 
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water. Use of hydrogen peroxide comes with some risk as it can be highly reactive to organics in the water 

so tanks should be cleaned before applying this treatment. In addition, it can be highly toxic to fish gills at 

temperatures of 14°C and higher (Bruno and Raynard, 1994; Roth et al., 1993). 

193. In-feed or static bath antibiotic treatments (usually via veterinary prescription) can be 

administered if needed for most bacterial infections. However, bacterial gill disease is not typically treated 

with an antibiotic, rather alternative bath treatments are more often used, such as hydrogen peroxide or 

Chloramine T at a supplier recommended dose.  

194. Additional information can be found in Brown (1994), Scarfe et al. (2006), Austin and Austin 

(2007), Woo and Bruno (2011) and Gudding et al. (2014). 

11.2.7. Disposition of wastes and carcasses  

195. Most jurisdictions have developed regulations and policies outlining how and where hatcheries 

may dispose of effluent wastewater and carcasses.  Certainly the majority of new hatcheries use technology 

to recirculate the rearing water to manage water budgets and reduce the level of effluent leaving the 

hatchery. These systems often use mechanical filtration, such as a drum filter or settling pond, to remove 

solids from the water leaving the hatchery production system. Some facilities also use new polymer 

technology as an option to bind and collect phosphorus before it exits the hatchery and enters the receiving 

ecosystem. 

196. Jurisdictions often establish and certify specific facilities to dispose of diseased and contaminated 

animals. Regular non-diseased mortalities are often sent to a landfill for disposal. Some hatchery facilities 

will opt to incinerate all dead fish removed from the facility regardless of the presence of an infectious 

pathogen.  

11.3.  Freshwater grow-out and smoltification 

11.3.1. Physical environment (tanks, nets, cages, etc.) and containment conditions  

197. Larger salmon have different rearing requirements that will dictate the type of containment. 

Major considerations are cost and utilisation of volume that will allow the salmon to have appropriate 

water velocity, velocity distribution, removal of solids and numbers of exchanges (Pennell and 

Barton, 1996). The source of water available will determine whether flow through, reuse, or recirculation 

systems are best. 

198. Salmon hatcheries and farms most commonly use circular fibreglass tanks. The main advantages 

of circular tanks are their self-cleaning capabilities and the fact that the velocity of the flow can be set 

independently of the incoming flow level. Raceways are long rectangular basins primarily constructed with 

reinforced concrete or polyester resin, but earthen raceways can also be made using plastic liners. 

Raceways are certainly less frequently used to culture salmon, but can provide a good use of space in some 

situations. Raceways require a high level of water flow to remove solids and distribute oxygenated water 

the entire length of the raceway. Baffles may be added along the length of the raceway to allow some self-

cleaning capability, but may add difficulty when distributing feed to the entire stock. In Chile, it is 

common to transfer fry to cages in freshwater lakes for further growout until smoltification. However, this 

practice is less favourable owing to the disease situation in the lakes, therefore, more and more of the smolt 

production has been moved to large recirculation farms. The Scottish industry also uses cages in lochs for 

smolt production, although to a lesser extent than in Chile. It is not permitted to produce smolt in open 

cages in fresh waters in Norway. 
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11.3.2. Rearing environment (water flow, D.O., temperature, lighting/photoperiod, etc.) 

199. Smolt production facilities vary in the technology present to limit the amount of new water 

entering the hatchery for production. Flow-through facilities use water once as it enters the system, passes 

through the tanks on a single pass then exits the system returning to the receiving environment. As the 

name suggests, a reuse system will reuse a portion of the production water (typically up to 50%) to offset 

some of the total facility water demand. Reuse facilities will filter the portion of effluent to be sent back to 

the production tanks prior to reuse, but will not integrate a biofilter given the high volume of new water 

entering the system. Recirculation systems reuse the majority of the system water volume and this can go 

as high at 99%. This strategy requires the effluent water to be fully filtered to remove particulate waste, 

stripped of gases such as carbon dioxide and nitrified to remove toxic levels of ammonia using many 

options for filtration, sterilisation, degassing, and biofiltration. Water quality monitoring in flow through 

systems is primarily concerned with water oxygen levels and temperature. Recirculation or high level reuse 

systems can present significant risks to the fish stock if comprehensive water quality monitoring is not 

implemented, including measurement of total ammonia, ammonia nitrate, ammonia nitrite, CO2, alkalinity, 

and pH. Various buffers may be added to the water filtration systems as necessary to maintain these 

parameters within acceptable limits. Kolarevic et al. (2014) compare the performance of Atlantic salmon 

reared in flow-through and recirculation systems. 

200. In all cases, facilities are likely to integrate filtration and disinfection strategies (e.g. bead or 

drum filters and UV disinfection) on the new incoming water as necessary to ensure that the quality of the 

water meets production requirements and is disease free. Likewise, regulatory requirements generally 

require some filtration of effluent water no matter the volume involved from smolt production facilities to 

minimise the effects on the receiving ecosystem. 

201. Hatchery operators must be aware of dissolved organic material even after particulates are 

filtered from the reused or recirculated water. Ammonia is toxic to Atlantic salmon and must be converted 

to less toxic compounds before the reused water can be sent back to the hatchery tanks, especially in a high 

recirculation system. The first step in this process converts ammonia to a nitrite (NO2-) by several genera 

of bacteria, including Nitrosospira and Nitrosomonas, within a biofilter. Nitrite is still toxic to fish and is 

the cause for brown blood disease if nitrite levels are not kept below 0.1 mg/l. A second step in the 

conversion process involves Nitrospira and Nitrobacter bacteria within the same biofilter to convert toxic 

nitrite to nitrate (NO3-), which is not harmful to salmon under 250 mg/l. These nitrifying bacteria require 

oxygen and alkalinity to grow and reproduce in a biofilter. It is therefore important to keep pH between 

6.8-7.5 and CO2 levels under 12 mg/l. Buffering of recirculation systems is nearly always done to balance 

the water pH and maintain alkalinity above 70 ppm as the bacteria will not thrive below this level. There 

are many fish safe products available to serve as a buffer and the specific type used will depend on the 

specifics of the system. Small systems needing a slight boost can add sodium bicarbonate. A dosing system 

may be used that continually drips in a buffer such as soda ash or caustic soda. Soda ash is a slow release 

buffer and does not react quickly to raise the pH levels whereas caustic soda, liquid or bead form, can 

rapidly regulate the system. 

202. It is imperative for fish health and growth to have the proper water flow for the rearing 

containment or type of system. Stocking density will change the degradation of water quality due to 

salmon faecal production and respiration, including oxygen consumption and CO2 and ammonia 

production. These parameters will determine the number of exchanges of water required in the holding 

tank in a particular period of time or the turnover rate. Depending on tank size water can typically be 

provided to allow a calculated turn over every 30 minutes to 3 hours. Incoming water flow may enter 

directly from an open pipe or pass through a spray bar or upweller depending on the system requirements 

to also add oxygen or strip gases at the time of water entry. Water velocity in the tank or raceway is 

another important consideration to ensure the fish experience adequate current to require constant 
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swimming without exhaustion or pushed backward when resting. Velocity can be set independently of 

incoming water flow in a circular tank by changing the angle and placement of incoming water thereby 

creating a vortex effect. Water velocity in a raceway is dependant of the amount of incoming water flow, 

but can be assisted using baffles or weirs to change the flow dynamic. Water velocities of 0.5–2.0 times 

fish body length per minute are optimal for maintaining fish health, muscle tone, and respiration (Losordo 

and Westers, 1994). The resulting spinning effect of the water in a circular tank also helps to remove solids 

from the tank with some additional cleaning required, but husbandry time should be decreased.  

203. Oxygen parameters are the same as discussed for fry. Most all rearing systems for grow-out 

require O2 supplementation and may allow an increase in the tank carrying capacity. In circular tanks the 

oxygen level will generally remain consistent throughout the volume of water. In raceways, oxygen levels 

become depleted the further distance down the length of the raceway away from the source of incoming 

water.  

204. Temperature of fresh water can range from 0-18°C depending on the season, fresh water source, 

and system design. Warmer temperature can allow for higher food conversion rates and faster growth, but 

only to about 16
o
C. Higher water temperature can be detrimental to the stock health and performance.  If 

recirculation systems are used then bacteria health within the biofilter must be a factor as the bacterial 

population can die if water temperatures fall below 4°C.  

205. A 24 hour photoperiod can be used from fry into juvenile stages to optimise feeding and growth 

but must be eventually reduced to ensure normal development of the light-brain-pituitary axis that is vital 

for smoltification (Ebbesson et al., 2007). A winter photoperiod, an 8 or 12 hour dark phase every 

24 hours, should be started in late December or January in the Northern hemisphere for a period of at least 

6 weeks (this is approximately 1 year after production). The photoperiod can be returned to ambient for the 

time of year after this required winter period is completed. The increasing length of day experienced under 

ambient photoperiod for this time of year will trigger the physiological responses required to handle the 

stress associated with the transition to full salinity water during smoltification. Growth will be stimulated 

in the spring and a 24 hr photoperiod can be used to increase feeding, weight gain, and therefore condition 

factors before the salmon are transferred from the hatchery as smolts into the marine environment for 

continued growout.  

206. Commercial producers often size grade fry and subsequently divert individuals into two different 

production strategies around mid-summer in the first year of production – namely production of S0 or S1 

smolts that are transferred to seawater at different times of the year. The fish that are chosen for S0 (0+ or 

underyearling smolts) production are the larger individuals in the size grading and are manipulated by 

photoperiod to smolt earlier than the later S1 smolt. The S0 smolt photoperiod is started approximately 

twelve weeks before the planned seawater transfer, and is initially a six-week rearing period under short 

day lengths (12 hours or shorter) followed by six weeks on continuous light (Hansen et al., 1998a; 1998b; 

Bjørnsson et al., 2000). However, in the industry there is considerable variation on the specifics of this 

generally recommended photoperiod regime. The S0 smolt is transferred to seawater at the end of this 

intensified light regime in late summer/autumn and their age is less than one year from fertilisation. The 

size of a S0 smolt is between 40 and 90 grams. 

207. The smaller fry at the time of sizing grading remain in the hatchery for S1 smolt production. 

These individuals are normally transferred from continuous 24 hr light to an ambient photoperiod 

sometime between mid-summer and October. They are reared under this ambient photoperiod until 

smoltification in the spring, 14 to 17 months after fertilisation. However, this light regime can also be 

varied with 24 hr light continued until approximately December when a winter photoperiod of 8 or 12 hour 

dark phase every 24 hours is necessary in the Northern hemisphere for 6 weeks. After this winter period 

the photoperiod can be returned to ambient and the increasing length of day will trigger the physiological 



ENV/JM/MONO(2017)64 

 64 

responses required to handle the stress associated with the transition to full salinity water during 

smoltification. As stated, growth will be stimulated into spring and a 24 hr photoperiod can be used to 

increase feeding, weight gain, and therefore condition factors before leaving the hatchery as smolts to enter 

the marine environment for continued growout. The S1 smolt is transferred to seawater in early to late 

spring. The size of a S1 smolt is between 60 and 200 grams. 

11.3.2. Fish sizes, densities, growth rates 

208. Salmon range somewhat in size and condition factor before smoltification but regardless it is 

imperative that all individuals have sufficient fat stores available before going in salt water to survive the 

stress associated with transitioning between freshwater and saltwater and the resulting period before fish 

begin to feed again post transfer. Ideally smolts should be a minimum of 60 g with a 1.2 condition factor as 

calculated based on Anderson and Neumann (1996) as follows: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝐿𝑒𝑛𝑔𝑡ℎ3 (𝑐𝑚)
𝑥 100 

Growth rate parameters in smolts are similar to fry with regards to parameters such as percent feed per 

day (see above).  

209. Stocking density is a balance between maximising use of tank volume while maintaining high 

growth rates while not compromising fish health and welfare. Stocking density of 30 kg/m
3
 is optimal but 

30-60 kg/m
3
 are typical as specific system considerations allow a much higher density. The specific 

stocking density will be unique to the farm and ultimately is dependent on water quality, water turnover 

rates, temperature, and dissolved oxygen demand.  

210. Growth variations in individuals of the same age can cause issues in managing hatchery 

production. A large range of sizes in the same tank will result in considerable competition amongst 

individuals, use of inaccurate pellet sizes for feeding, and can compromise the overall health of the 

population. Size grading separates salmon into similar size groups and allows an opportunity to cull the 

smallest grade of salmon for economic and fish health concerns. The grading process and type of grader 

used will vary depending on the size of the farm. Smaller facilities may use bar graders to grade a single 

tank or raceway. Bar graders are labour intensive requiring the fish to be poured into a hopper and the 

small fish subsequently swim and/or are pushed between bars while the large fish stay on the bar surfaces 

and move to another tank. Roller graders are presently the most common type used in larger hatchery 

facilities and use a series of continually rolling aluminium bars that direct the salmon to move through at a 

particular area. The rollers are spaced apart by specific distances such that small distances are positioned 

towards the front of the grader and this distance increases further along the length of the unit. Some 

hatcheries may still use belt graders that use a similar strategy, but involving two belts that widen as the 

fish move along the belt length and allow the fish to pass through depending on its girth thereby grouping 

individuals of a common size range into a single tank. Each smolt production facility will have different 

growth rates and size separation of individuals that will determine the frequency that size grading is 

required. Fish size grading can be completed at almost any stage of the hatchery life cycle past first 

feeding. 

11.3.4. Feeds (types, sources, composition) and feeding (rates, methods) 

211. Freshwater grow-out feed is most commonly a properly balanced diet of manufactured extruded 

pellet. Protein levels in most diets are between 46-48% and lipid between 26-30%. Pellet size will depend 

on the weight of the salmon. Transitioning to larger feed sizes should be completed slowly with gradual 

increases of the larger size in a mix that typically begins as a 50:50 blend of the two sizes involved in the 



 ENV/JM/MONO(2017)64 

 65 

transition. Transitioning salmon to the next largest pellet size is important when possible as less energy 

will be expended to consume a single larger pellet compared to multiple smaller pellets and result in higher 

food conversion rates. 

212. Temperature and photoperiod are the two most important considerations when determining the 

total percent body weight in feed to offer the population each day, but this will range between 0.1 to 3% 

body weight per day. Atlantic salmon held at temperatures above 4°C can be fed daily, but below 4 °C 

feeding events should diminish to 1-5 times per week. The presentation of feed will also change as salmon 

grow. Fry initially require feed to be presented continually throughout the photoperiod, but this practice 

changes to discrete meals during grow-out. Meals are presented to feed the population to satiation 2-

12 times per day using automatic or hand feeding. Periodic size grading will help to eliminate the size 

range in the tank; however, not all salmon will aggressively feed requiring the presentation of numerous 

meals and feeding to satiation. Extending each meal over a period of time will allow the highly competitive 

individuals within the population to ingest the first part of the feed presented then provide the less 

aggressive individuals feed during the latter part of the meal. Hand feeding some of these meals each day is 

highly recommended to allow an opportunity for hatchery staff to monitor the behaviour of the population 

to assess overall fish health. See general nutrition references in Section 11.2.4 for additional information. 

11.3.5. Diseases, pathogens, and parasites 

213. All fish health issues and treatments for fry are applicable throughout the entire freshwater grow-

out phase. However, there are other pathogens to consider with larger salmon in freshwater.  

214. Viral and bacterial diseases of salmonids have received much attention owing to the severe 

pathology associated with most infections and the ubiquity of these pathogens (see reviews in Kent and 

Poppe, 1998b; Woo et al., 2002; Toranzo et al., 2005; Austin and Austin, 2007; Woo and Bruno, 2011).   

215. Bacterial kidney disease (BKD, caused by Renibacterium salmoninarum) is a slow growing 

Gram positive pathogen that is present in many watersheds and shown to be vertically transmitted from the 

female. However, there is discussion as to whether males may also be involved in transmission, so 

hatcheries often also inject males with erythromycin prior to spawning. Infected fish can take months to 

show symptoms of bacterial kidney disease, but the disease can result in considerable losses of stock. 

Screening programs for broodstock have helped to control the vertical transmission of the pathogen across 

generations. The infection rate of BKD in cool water tends to be slow, but it increases in warm water. 

Symptoms of bacterial kidney disease can include pale gills and distended abdomen with greyish white 

nodules on the spleen, liver, and kidney (Roberts, 2012; Austin and Austin, 2007; Brown, 1994); however, 

these should be not used as the sole method of diagnosis.  

216. Columnaris disease is caused by the Gram negative Flavobacterium columnare bacteria. It can 

cause acute or chronic mortality. Typically, infection can be seen on the gills, skin and fins. It has a white 

patchy appearance, with yellow pigment, and, if caught early, can be treated externally. It is sometimes 

referred to as “saddleback” disease as often the infection will be localised at the base of the dorsal fin.  

217. Tenacibaculum maritimum was previously referred to as Flexibacter maritimus, but changed 

classification in 2001 (Plumb and Hanson, 2011). It is one of the most prevalent health issues in salmon 

culture and a major cause of mouth rot and fin erosion in cultured salmon held in saltwater. It is 

taxonomically related to Flavobacterium thus results in similar features and symptoms; however, 

Flavobacterium is common in freshwater. The rate of infection can be controlled with bath treatments or 

antibiotics. Tenacibaculum sp. can occur in hatcheries with saltwater intake.  
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218. Whirling disease (caused by Myxobolus cerebralis) has been of great concern among trout 

hatcheries in the United States, such that there have been many regional initiatives 

(http://whirlingdisease.montana.edu/) to encourage research collaboration among states, promote public 

awareness and mitigate spread of the parasite.  

219. Of similar concern, the parasitic monogene fluke, Gyrodactylus salaris, has been frequently used 

as a ‘worst case example” of what could happen to wild fish populations after release of hatchery-reared 

fish into streams. During the 1970’s, G. salaris originating from a Baltic stock in Sweden was imported to 

aquaculture programs in Norway and later spread through stocking of Atlantic salmon from a few infected 

hatcheries to several Norwegian rivers (Johnsen and Jensen, 1991; Bakke et al., 2004; Jansen et al., 2007; 

Buchmann and Bresciani, 2006). The parasite also spread to neighbouring native wild populations of 

Atlantic salmon resulting in catastrophic losses (average c. 85 %) in over 40 Norwegian rivers.  

220. Parasites do not normally cause such extensive harm to their host to the point of becoming lethal. 

Part of a common theme with the above problematic parasites is that a parasite has encountered a ‘new 

host,’ thus there has been no period of co-evolution of host and parasite. The parasite (M. cerebralis) that 

causes whirling disease was first introduced into the United States via transfer of brown trout (Salmo 

trutta) from Europe. Brown trout are carriers or reservoir hosts; whereas, rainbow trout (Oncorhynchus 

mykiss) are highly susceptible, thus the rapid spread. Sometimes the new host is not a new species of fish 

but rather a different strain or phylogeographic unit (e.g. the accidental transfer of G. salaris into 

Norwegian rivers), thus further emphasising the importance of understanding salmon broodstock and 

population genetics.  

221. Ichthyophthirius multifiliis, commonly referred to as ich, is a singled celled protozoan that has 

three life stages with only one stage being treatable. These parasites are mostly found in facilities that 

receive incoming water from surface water sources. Infections are most often an issue in hatcheries that use 

outdoor rearing ponds or have no filtration. Salmon infected with ich become agitated, hyperactive, and 

rub their gills against surfaces, referred to as flashing (Woo and Buchmann, 2012). Ich can cause acute 

mortality if left unchecked without treatment. 

222. Costia (Ichthyobodo spp.) is a single-celled, flagellated parasite that lives on the skin and gills. 

Salmon can handle low level infections and symptoms include flashing and rubbing, lethargy, and laboured 

breathing.   

223. Brown blood disease is caused from toxic levels of nitrite in the production water. This non-

infectious disease changes the gills from red to a brown colour because the oxygen in the blood 

haemoglobin is bound thereby starving the cells of O2. Proper care and monitoring of water quality helps to 

prevent this disease from occurring. Feeding of the fish population should immediately be reduced when 

nitrite levels begin to escalate to give the bacteria present in the biofilter an opportunity to respond and 

begin converting the nitrite into the less harmful desirable nitrate. Addition of salt can prevent this 

condition (Woo, 2010; Brown, 1994) 

224. Infectious pancreatic necrosis (IPN) is caused by a virus. Salmon with IPNV may have a swollen 

abdomen or eyes (exopthalmia), darkening of the skin, exhibit spiral swimming and faecal casts trailing 

from the vent. Internally, IPNV may be characterised by pancreatic necrosis, catarrhal exudates in the 

intestine and haemorrhages in the visceral organs. These symptoms are similar for most viral (and some 

bacterial) infections, further emphasizing the importance of not using visible symptoms alone for 

diagnosis. IPN is managed through health testing (broodstock screening) and biosecurity measures. Several 

vaccines exist for IPN and a published DNA marker is available if its use is desired for screening 

broodstock (Moen et al., 2009). 
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225. In any aquaculture operation it is essential to minimise stress in the fish because stress causes 

release of cortisol and other steroids into the bloodstream which block or suppress various pathways of the 

immune system (Roberts, 2012; Brown, 1994). Similarly, when salmon are undergoing smoltification, their 

immune system is compromised due to the high levels of hormones in the blood and dynamic 

physiological state (Roberts, 2012). Each aquaculture operation will use various techniques to minimise 

stress when handling fish (e.g. use of anaesthetics, no feed prior to and after handling).  

11.3.6. Drug treatments, vaccines, and usage of chemicals for cleaning and disinfection 

226. One of the largest economic impacts on the aquaculture industry is loss of animals from disease. 

A conservative estimate of 5% loss means the finfish aquaculture industry loses $1 billion annually on a 

global scale (Dixon, 2012). Intraperitoneal (IP) or intramuscular (IM) injectable vaccines are available 

during the pre-smolt stage that will protect salmon from a variety of pathogens upon entry into saltwater. 

Pharmaceutical companies have different products that will target specific pathogens with numerous 

specific pathogens typically covered within a single injection of vaccine. Most commonly used multivalent 

vaccines treat against the outbreak of vibrio, furunculous, IPN, BKD, ISA and Moritella. Injection 

vaccines have a number of advantages providing a longer duration of protection and allowing multiple 

antigens to be mixed in one dose. IP vaccinations are usually completed on fish over 30 g and often require 

at least 500 degree days before transfer to seawater to ensure the development of sufficient disease 

resistance and to achieve proper efficacy. All salmon are vaccinated prior to transfer to saltwater as a 

standard, often mandatory, practice. For example, in Norway it is mandatory to at least vaccinate against 

furunculosis, vibriosis and cold water vibriosis (http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-

20080617-0822.html). Vaccination at high temperatures can have undesirable side effects 

(Berg et al., 2006) and it is recommended to vaccinate at temperatures below 15
o
C. An opportunity is 

present during vaccination handling to remove and cull all sexually mature male parr and malformed 

individuals. 

227. All internal bacterial infections may require an in-feed antibiotic treatment to control the effects 

of disease and transmission. The veterinarian will determine which antibiotic is best to use and the product 

will be released and controlled via a prescription. External bacteria or parasites can be treated or controlled 

using bath antibiotic or therapeutant treatments.  

228. Following strict biosecurity procedures as part of a good Fish Health Management Plan will help 

prevent spread of pathogens and will increase the overall health of animals. Common practices to 

implement include detailed record keeping, the use of footbaths, hand washes, and clean gear (e.g. nets, 

scrub brushes, etc.) not shared between buildings, year classes, and species (if multiple species are housed 

on a single site). Numerous chlorine and iodine based disinfectants are available commercially to kill most 

types of bacteria and viruses on contact or following an established duration of contact. These disinfectants 

are commonly used in footbaths and tank cleaning. Ethanol (ETOH) 70% may also be useful for cleaning 

small areas and instruments. Thorough cleaning and disinfection should be completed when entire systems 

are empty and before the next population of fish are added to the tanks. A combination of products can be 

deployed to better clear all biofilm especially in areas that are difficult to manually scrub. Caustic soda 

may be used to raise the pH of the cleaning water and causing all pipes and surface areas to shed material. 

Bleach, Virkon™, or iodine can be used as a secondary sterilisation agent. A dry period should always 

follow cleaning and disinfection procedures. Water passing through cleaned and disinfected systems 

should be tested to ensure pH and chlorine are within normal limits before adding fish stock to the tanks 

because most of these cleaning agents are highly toxic to fish. 

11.3.7. Disposition of wastes and carcasses 

229. Disposition of wastes and carcasses is the same as the hatchery phase. 
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11.4. Marine grow-out 

11.4.1. Physical environment (tanks, nets, cages, etc) and containment conditions 

230. Atlantic salmon marine growout sites exist in a wide variety of oceanographic conditions, but the 

vast majority of farm operations are sited near the coast in protected or relatively low energy environments. 

However, more and more new farm sites are now being developed in more exposed locations where use 

conflicts might be less, but the oceanographic energy is dramatically higher. Design and installation of 

marine grow-out sites are fairly consistent at a high level globally and generally well known for those 

involved in the industry with some modifications expected on a site-by-site basis. General discussions 

related to marine set-up and operations may be reviewed in Beveridge (1996), Bridger and Costa-Pierce 

(2003), Costa-Pierce (2002), Landau (1992), Stickney and McVey (2002) and Willoughby (1999). 

231. Atlantic salmon are raised in net pens through the marine phase of the grow-out cycle. The vast 

majority of grow-out cages used globally are classified as “gravity cages” as these net pens hang a net 

within the water column and rely on the force of “gravity” to maintain shape and volume (Figure 12; 

Loverich and Gace, 1998). Other cage types have been offered to the industry by commercial suppliers, 

especially for higher energy environments, which are more rigid in design. However, the industry has been 

slow to adopt new cage designs given simplicity in design, ease of operations, and the lower cost per cubic 

meter of growing fish in gravity cages compared to other cage designs. Maintaining complete integrity of 

each net pen is essential to ensuring full containment of the Atlantic salmon stock.  

Figure 12. Typical gravity net pen arrangement used predominately throughout the global Atlantic salmon 

farming industry 

 

       Source : Bridger, C.J. et al., 2015  

232. Gravity cages have a structural floating surface collar that provides the required surface 

buoyancy from which the containment nets are hung to retain the stock of fish within a defined volume of 

the water column. Surface collars are primarily manufactured using HDPE (high-density polyethylene) 

pipe although wooden and steel surface collars are also sometimes used in some jurisdictions globally, but 

in environments that are much more benign from a surface wave perspective. The majority of HDPE 

collars comprise two separate concentric pipe rings that are connected using a series of stiff uprights or 

stanchions. Some HDPE collars may have three rings to provide a wider work platform and more 

robustness in higher energy environments. Regardless of the number of collar rings or the size of pipe 

used, the total buoyancy provided by the entire surface collar must offset the downward forces experienced 

from the weight of the series of nets with expected biofouling, weight ring, and downward forces from the 

mooring system. Redundant buoyancy is provided in the surface collar rings by filling them with 

Styrofoam plugs in the unlikely case the structural integrity of the surface pipes is compromised (from 

structural fatigue and damage, poor workmanship, or vandalism) allowing water to enter. 

 

               
               

                 

         

            

       

           

            
                 

             
           

         

              



 ENV/JM/MONO(2017)64 

 69 

233. The primary containment net hangs from the surface collar and comprises of a twine mesh that is 

typically sized based on government requirement, stock insurance policy, or fish farm experience to 

prevent fish escape. At least two containment nets are used throughout the grow-out cycle including a 

smaller mesh smolt net used immediately when smolt are entered and a larger mesh grower net that 

replaces the smaller mesh when the smolt net is fouled and fish are large enough to not escape. The 

containment net is tied to the internal collar float pipe and has an upper jump net portion (typically about 

1 m high) that extends from the water surface to the collar handrail. The jump net prevents the escape of 

farmed fish as they frequently jump out of the water. Various materials have been used for the containment 

net depending on the objectives of the fish farm operators. Today, most containment nets favour knotless 

nets, primarily of nylon or polyamide material, to decrease total material required to manufacture a net and 

therefore decrease the total net weight and associated costs of a net having knots.  

234. Two other nets are typically deployed within a complete net pen system with both having 

primary roles to keep predators away from the target fish stock: 

 Bird nets spread across the entire open surface area of individual net pens and serve as a 

deterrent to predatory or scavenging bird species. Bird nets are typically held up from the water 

surface using a bird net stand that is manufactured of HDPE pipe and positioned in the middle of 

the collar circumference. Bird nets tend to be deployed as a permanent part of the net pen system; 

however, these nets are sometimes removed when the contained Atlantic salmon reach the target 

harvest size and the operator is preparing to harvest. 

 Predator nets are deployed in specific jurisdictions and often seasonally as necessary (based on 

regulatory or insurance requirements) to protect the contained fish from aggressive large fish, 

marine mammal, or shark predatory attacks. Predator nets are tied at the water level to the outer 

collar floatation pipe and extend down into the water column beyond the depth of the 

containment net and often completely encircling the containment. A shark guard net is often 

deployed in areas having a high shark population and attached outside of the bottom of the 

containment net. Predator nets serve absolutely no purpose to the containment of the Atlantic 

salmon stock and therefore use net mesh that can be several times larger than the biggest 

containment net mesh. 

235. Net bagging and other distortions to the cylindrical shape of the containment net must be avoided 

to provide optimal growing conditions to the contained Atlantic salmon stock within each net pen. This is 

easy to achieve in locations having no (or very low) current. As current is introduced the flexible net 

hanging from the surface collar will follow passing water current and result in considerable net bagging 

and loss of grow-out volume. Net bagging will increase fish stress, fish mortality and product downgrades 

through exterior abrasion of the fish on the bagging containment net and overstocked populations. In low 

current, tying small individual weights to soft eyes integrated in the intersection between the side and 

bottom net panels will hold the net pen volume through gravity. In higher current velocity, gravity cages 

may be tied directly to a continuous weight ring (or sinker tube) made from HDPE pipe filled with sand, 

concrete or steel wire cable/chain in the same general location to maintain the net shape and volume. 

236. Net pens are held spatially in a leased area of ocean space using an appropriate mooring design 

that accounts for system restraint spatially (i.e., mooring stiffness) and an appropriate degree of movement 

to allow for storm surges and tidal ranges (i.e., mooring elasticity). Net pens may be moored individually 

or within a group, frequently referred to as a flotilla. Mooring net pens individually employs 3-4 mooring 

lines that connect the surface collar to the seabed. However, the most common mooring strategy is to use a 

submerged grid system, with anchor lines arranged in a catenary shape to secure a group of net pens on a 

site lease (Figure 13). The components of the anchor line (i.e., chain, rope, buoy) will be specific for the 

area and anticipated loads in an effort to optimise the stiffness/elasticity characteristics. The submerged 
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mooring grid system is maintained at any depth in the water column, primarily determined by the vessel 

traffic that must visit the site and the oceanographic conditions present. Sites located in higher energy areas 

typically deploy the submerged mooring grid at a greater depth to dampen the loads experienced. 

Figure 13.  Line drawing of a group of net pens held together spatially using a submerged mooring grid 

 
 

 

       Source : Bridger, C.J. et al., 2015  

237. The logistics required to efficiently manage a 1 000 000 Atlantic salmon marine growout site 

should not be underestimated. These sites tend to be remote from the nearest shore base primarily to avoid 

conflicts with other users of the ocean space especially near coastal communities. Daily site visits to the 

farm site may be desirable but not always possible especially in more exposed open ocean conditions due 

to frequent inclement weather conditions making visitation unsafe. Well boat or road/ferry transport is 

most often used to deliver the smolt to the marine site to begin this stage of the growout cycle. Such 

modern well boats can have a capacity of up to 900 cubic metres and be capable of transporting up to 

100 metric tonnes of live fish.  

238. Direct handling of the culture stock is generally kept to a minimum throughout the marine 

growout period to reduce stress on the fish and resultant risks associated with poor fish health, particularly 

in areas with warmer water temperature. Certainly the exception to this approach presently is the ongoing 

requirement to complete multiple transfers of Atlantic salmon to well boats to treat for sea lice infestation. 

Smolt are frequently single stocked in each net pen in keeping with the desire to minimise handling, such 

that the harvest number and target weight provides calculated target harvest density for the specific net pen 

being stocked. Some fish farm operators might have little choice but to initially double or triple stock each 

net pen with a plan to later size grade and split the stock into additional net pens as the fish grow. 

However, multiple stocking is generally not a desirable strategy given the need to time stock splitting or 

risk overall fish welfare issues, the inherent difficulty to equally split the stock and track numbers that are 
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entered to each subsequent net pen, and high risk of escape during the stock splitting procedure especially 

if using an underwater swim-thru approach. 

239. Daily site visits allow the site crew to feed the fish stock, generally observe the well-being of the 

fish, check for the presence of predators, generally monitor the integrity of the mooring grid system and 

inspect collar bridle connections. Sending divers into the water at least one day each week is acceptable 

practice to remove dead fish and visually inspect the integrity of the containment net for holes. Technology 

can now replace divers to collect dead fish using air lift-up systems but visual observations of the fish 

stock and nets underwater is still widely practiced. Thorough underwater inspections are also generally 

required in the fall to prepare for the winter storm season, in the spring as the worst storms subside, and 

quickly following every major storm event to observe and report on overall structural integrity of the nets 

and mooring system. 

11.4.2. Rearing environment (water flow, D.O., temperature lighting/photoperiod, etc) 

240. Early sexual maturation is one of the main problems in the production of most aquaculture 

species, including salmon. Sexual maturation in salmon is associated with reduced growth, loss of flesh 

quality and high mortality. Sexually mature salmon lose their ability to regulate their water and salt balance 

in seawater, and most of them will die during the winter if they are grown in seawater. Keeping sexually 

mature salmon in seawater is therefore regarded as a serious welfare problem.  

241. The occurrence of unwanted early sexual maturation (grilsing) is kept to a minimum by the use of 

artificial illumination. The recommended strategy for S0’s is to rear them under natural light from their 

seawater transfer in August/October until January, after which they should be reared under continuous 

artificial light (Oppedal et al., 2006). This strategy reduces the incidence of sexual maturation at 

approximately 24 months post-fertilisation. The S1’s are reared under natural light from their transfer to 

seawater in March-June. The artificial light is turned on in December/January. This reduces the incidence 

of sexual maturation at approximately 36 months post-fertilisation. 

242. When using lights mounted above the water surface the recommendation is to use 4W/m
2
 cage 

surface (metal halogen lights). Today the industry is using more and more specially developed underwater 

lights which are more efficient. As a result, the unwanted illumination of the surroundings and the amount 

of energy needed to illuminate the cage is greatly reduced. 

243. The fish farmer must contend with biofouling of the nets during the grow-out cycle. Net 

biofouling is addressed either through scheduled net changes as necessary or more frequent net cleaning 

while deployed in the water. Net changing requires the farm operators to carefully untie the present fouled 

net, placement of the new clean net outside of the fouled net, removal of the fouled net and securing the 

new clean net to the collar and any weighting system at depth. Net changing is a common practice within 

the fish farming industry, although it does present an additional handling of fish farm infrastructure that 

can result in a loss of fish. The Atlantic salmon eventually grow to reach the target harvest weight. The 

stock is harvested, bled, and returned to shore for final processing prior to being sold to the marketplace. 

11.4.3. Fish sizes, densities and growth rates  

244. Smolts are normally transported at densities of 30-50 kg/m
3 
when the transport is done with open 

valves (Rosten et al., 2005). Water flow is normally not a problem as the flow in a well-boat can be 3-

4 times the water flows used in normal smolt production. Atlantic salmon may be stocked in sea cages any 

time after the fish have smolted, usually when they are greater than 50 g, but typically stocking occurs at a 

size of greater than 70 g. It is a common practice today to stock larger smolt so the fish can better tolerate 

the anticipated set of sea lice that will be more of an issue for smaller fish. Production time from seawater 



ENV/JM/MONO(2017)64 

 72 

transfer can range from seven to 18 months in S1’s and 12 and 20 months in S0’s. The production cycle 

during the on-growth period in seawater varies between companies, farms, regionally within countries, and 

between countries. Salmon are slaughtered at a size between two and three kilograms and up to more than 

10 kg. Typical target market weight is approximately 5 kg. 

11.4.4. Feed (types, sources, composition) and feeding (rates, methods)  

245. The same 1 000 000 fish farm will produce upwards of 5 000 metric tonnes at a target harvest 

weight of 5 kg per fish. This farm will require delivery of up to 6 125 metric tonnes of feed over the course 

of the anticipated 18 month marine growout period at a food conversion ratio of 1.25. Putting this volume 

of feed into perspective, a standard flatbed transport truck will typically carry 22 metric tonnes as a 

standard load. 

246. In a salmon farm, large quantities of feed have to be distributed every day. The feed is normally 

delivered to a land base or directly to the farm. The feed is transported by road or by boat in bulk or in 

large bags (500-800 kg). On the farm the dry feed is kept in silos and is distributed to the individual sea-

cages through pipes. The feed is distributed by pressurised air, or in some cases by water. The feeding 

systems are normally computerised and linked to a production control system. Hand feeding used to be 

common, but today this is only done for appetite control or as a supplement to automatic feeding during 

critical stages (i.e., immediately after seawater transfer). In a salmon farm there can be considerable 

variation in appetite between cages and from one day to another. Most farms use a system for waste feed 

detection, such as underwater video cameras (for inspection during feeding), dopplers that register pellets 

falling through the net, or lift-up systems which collect waste feed in a ‘funnel’ hanging under the cages, 

and lift it to the surface with a pump. 

247. The stock is fed multiple times each day using either feed boats that tie to individual net pens to 

complete the meal feeding or from a centralised feed system that manually or automatically provides 

calculated feed amounts to each net pen population through feed pipes that extend between the moored 

feeder and individual net pens. The allotted feed can be calculated from feed tables based on the biomass 

present, water temperature and assumed food conversion ratio. Alternatively, cameras can be used to try to 

monitor the feeding behaviour of the Atlantic salmon stock through detection of excess feed pellets. 

Successful use of cameras for this purpose can be limited in locations that have high tidal current that 

easily washes feed pellets away from the net pen volume, where high organic loads are present in the water 

column reducing underwater visibility, and in large volume net pens where the camera field of view is too 

small to be effective. With proper use both feeding strategies can be used to monitor for excess feeding. In 

some cases a dramatic change in the feed requirement of the assumed fish population can indicate a fish 

health concern or loss of stock, presumably from escape, predator consumption, or theft. See general 

nutrition references in Section 11.2.4 and feed company websites. 

11.4.5. Diseases, pathogens, and parasites  

248. In salmon farming, there is a considerable problem linked to the parasitic copepod salmon louse 

(the main species is Lepeophtheirus salmonis). The salmon louse is an ectoparasite on salmon in seawater. 

Lice infestations can damage the skin and mucus layer and, in heavy infestation, result in osmoregulatory 

problems and secondary infections (Pike and Wadsworth, 1999). Injury and losses due to salmon lice are 

one of the main health and economic problems in salmon farming, with global estimates of cost near $500 

Million USD (Costello, 2009). In salmon farming regions of the world, the topic of sea lice interactions 

between wild and farmed fish has become quite polarised (Beamish et al., 2006, 2007; Saksida et al., 2008; 

Marty et al., 2010; Jones and Beamish, 2011). There has been so much attention directed toward this 

parasite that we now have information from several salmonid host species about the immune modulation 

due to seal lice infection at the genomic (Braden et al., 2012) and cellular (Lewis et al., 2013) level. 
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Further research indicates the Pacific and Atlantic species of lice (L. salmonis) are actually quite distinct 

genetically and they cause different pathologies, which raises the question of comparing studies from both 

oceans. Because of the seriousness of the situation, the Norwegian authorities have issued a regulation 

(FOR 2000-02-01 nr 70) as a measure for combating this problem. At sea temperatures above 4 
o
C the fish 

must be inspected for sea lice at least every two weeks. The number of adult females, the number of sea 

lice in mobile stages (adult males and pre-adult males and females), number of treatments, sea temperature, 

and the use of wrasse are to be registered and reported to the Norwegian Food Inspection Authority every 

month. 

249. Between December 1 (in Troms and Finnmark, November 1) and July 1, fish must be treated if 

the average number of adult females per fish is more than 0.5, or if the sum of adult females and mobile 

stages is on average more than five. Between July 1 and December 1 (November 1 in Troms and 

Finnmark), fish must be treated if the average number of adult females per fish is greater than two, or if the 

sum of adult females and mobile stages is on average more than 10. Normally, all fish on the site 

concerned will have to be treated. An exception is made for cages with less than 0.1 mobile stages and 

adult females. The fish must be treated within two weeks, after the threshold has been exceeded. 

250. In British Columbia, Canada, farmed Atlantic salmon must be treated for sea lice if there are an 

average of 3 motile stages per fish, especially during the outmigration periods of juvenile wild Pacific 

salmon smolts (March-May) (http://www.pac.dfo-mpo.gc.ca/aquaculture/reporting-rapports/mar-rep-

rap/2011-2014/sec_1-eng.html). 

251. Viral diseases, in addition to sea lice are the main problems in the marine grow-out phase of 

Norwegian salmonid aquaculture. Table 5 gives an overview of the occurrence of the most common 

diseases with confirmed or suspected viral aetiology. ISA (infectious salmon anemia), PD (pancreas 

disease), HSMI (heart and skeletal muscle inflammation), IPN (infectious pancreatic necrosis) and CMS 

(cardio myopathy syndrome) was diagnosed on 480 sites in 2011, and the vast majority of these diagnoses 

are from marine grow-out sites (the annual Fish Health Report from the Norwegian Veterinary Institute, 

http://www.vetinst.no/Publikasjoner/Fiskehelserapporten). One of the main reasons for this situation is the 

lack of effective vaccines against viral diseases (Gomez-Casado et al., 2011).  

Table 5.  Number of sites diagnosed with the most common viral diseases in Norwegian salmonid aquaculture 

 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

ISA 13 14 23 21 12 8 16 11 4 7 17 10 7 1 

PD 7 10 11 15 14 22 43 45 58 98 108 75 88 89 

HSMI       54 83 94 162 144 139 131 162 

IPN     174 178 172 208 207 165 158 223 198 154 

CMS           75 76 53 74 

 

252. The main bacterial diseases (furunculosis, vibriosis and cold-water vibriosis) are successfully 

controlled with the combination of vaccines and general biosecurity measures applied today in aquaculture 

globally. Still, cases occur sporadically but they are not considered a significant problem. Moritella viscosa 

is an important causal factor of the disease winter-ulcer, but other bacteria, mainly Tenacibaculum 

maritimum, have been increasingly linked to this condition (Olsen et al., 2011). BKD still occurs 

sporadically, but the number of outbreaks has been drastically reduced during the last 15 years due to good 

broodstock testing routines. However, the bacterium can occur in healthy carrier wild fish and the threat of 

horizontal transmission will always exist.  

253. In addition to sea lice described above, a handful of other parasites occur on a regular basis. The 

myxozoan Parvicapsula pseudobranchicola is widespread in the northern parts of Norway, and infections 

can lead to high mortality (Karlsbakk et al., 2002). The microsporidian Desmozoon lepeophtherii (Freeman 
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and Sommerville, 2011) (synonym Paranucleospora theridion) occurs along the entire coast, but its role as 

a pathogen is still unclear. Tapeworm (Eubothrium sp.) is relatively common but curable, as are various 

surface parasites. In Chile, Piscirickettsia salmonis, the sea lice Caligus rogercresseyi and the viral 

diseases ISA and IPN are considered significant problems. 

254. Pathogens that represent a concern to Atlantic salmon marine production in Canada include 

infectious salmon anemia virus (ISAV), viral hemorrhagic septicaemia virus (VHSV), infectious 

hematopoietic necrosis virus (IHNV), infectious pancreatic necrosis virus (IPNV), Aeromonas salmonicida 

(furunculosis), Yersinia ruckeri (enteric redmouth disease), Renibacterium salmoninarum (bacterial kidney 

disease), species of Vibrio and sea lice (Caligus elongatus and Lepeophtheirus salmonis). 

11.4.6. Drug treatments, vaccines, and usage of chemicals for cleaning and disinfection 

255. Atlantic salmon globally are typically vaccinated in freshwater before entry to sea cages so they 

are protected in the marine environment. There is also extensive use of different pharmaceuticals and 

antiseptics (e.g. hydrogen peroxide) against sea lice infestations. Antibiotics are rarely used on salmon with 

typically less than 1% of the production each year being treated (http://www.vetinst.no/Nyheter/Norsk-

fiskeoppdrett-bruker-minimalt-med-antibiotika). In addition, there is some use of pharmaceuticals against 

tapeworm (Praziquantel). All vaccines and pharmaceuticals must be approved by the appropriate 

government agencies in the jurisdiction of use. 

256. Salmon lice infestations have been treated with antiseptics, organic phosphates, pyrethrines and 

pyrethroids, avermectins and chitin synthesis inhibitors. The avermectins and chitin synthesis inhibitors are 

administered through the feed, while the other treatments are given as baths. Bath treatment typically 

involves placing a closed or semi-closed tarpaulin around the cage and adding the treatment chemical. 

Treatment of fish sometimes also occurs in well boats subsequent to transfer of fish from the sea cage. 

Labrids (wrasse) (Bjordal, 1990) have been used as an alternative to chemical treatment for more than 

fifteen years primarily in Norway with lumpfish receiving attention as a cleaner fish in more recent years. 

These cleaner fish remove individual sea lice from Atlantic salmon. 

11.4.7. Disposition of wastes and carcasses  

257. Scuba divers are used to collect dead fish from cages. Dead fish are transported to land and 

disposed of similarly to land-based disposal. The open-system technology (e.g. net pens and cages) used 

for most Atlantic salmon grow-out in marine environments results in release of all inputs to the cages to 

the surrounding water, except what is harvested as fish. These emissions consist of nutrients and dissolved 

organic substances, surplus (uneaten) feeds and faeces, antifouling devices and chemicals, including 

medicines and disinfectants. Some of these effluents may be reduced by improvements in husbandry and 

technology (e.g. underwater video systems to monitor feeding and reduce the amounts of uneaten feed) 

while others are inevitable in aquaculture and increase with increasing production.  

11.5.  Land-based grow-out 

11.5.1. Physical environment (tanks, nets, cages, etc.) and containment conditions  

258. The Atlantic salmon aquaculture industry is proficient at operating land-based growout to 

produce millions of smolt in freshwater annually. Recirculation systems represent a significant portion of 

this smolt production globally. Continuing the growout so that it is entirely achieved in land-based 

facilities through to the target harvest weight of 4-5 kg per fish would be very similar to the smolt 

production systems already discussed, but on a much larger scale. From a technology perspective, raising 

Atlantic salmon to market size in a closed containment system is possible as long as every component 

within the system is operated to reach its maximal efficiency and optimisation. However, there are many 
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uncertainties with this approach that need to be addressed before serious investors will commit to land-

based systems including the risks associated with pathogens should they enter the facility, the variable 

costs to operate the facility (especially to pump water ashore), the capital costs and land footprint required 

to become economically feasible, and the research needed to optimise land-based growout operations, for 

example appropriate diets and genetic selection. Figure 14 provides one perspective on the operations of a 

land-based growout facility using full recirculation compared with other production models including 

marine based net pens.       

Figure 14.  Basic overview of requirement to raise salmon to harvest 

 
 
Source : Wright and Arianpoo, 2010 

 

259. Farm site criteria will factor in transportation, distribution, land, electrical and labour costs. If 

freshwater alone is planned, then the facility may be located near a target destination city rather than in 

distant coastal communities thereby reducing some of the operating costs associated with transportation 

and distribution. The scale is a significant point since it has the most influence over the future financial 

performance, but costs do not linearly diminish with increasing scale (Pinfold, 2014; Figures 15 and 16). 

Once the scale is selected the components of the farm can be chosen. An example of a 100 MT module 

farm (20 000 individuals at 5 kg each) that grows salmon from smolt to harvest can be built in a 2.25 

square kilometre footprint (Figure 17). The modular system has 10 x 200 m
3
 tanks that can be isolated to 

prevent total losses if there is a disease issue.    
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Figure 15.  Unit capital cost ($/kg, left) and to market unit operating costs ($/kg, right) for 100 to 1000 MT 

land-based farms 

          
Source : Pinfold, 2014 

Figure 16.  Unit Energy Use (kWh/kg) for 100 to 1000 MT land-based farms 

 
Source : Pinfold, 2014 

 

Figure 17. Footprint of an example 100 MT land-based farm 

 
     Source : Wright and Arianpoo, 2010 
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11.5.2. Rearing environment (water flow, D.O., temperature, lighting/photoperiod, etc.) 

260. In most cases, land-based systems will have no choice but to use intensive recirculation 

technology similar to the systems described for fry and smolt production, due to the large volume of the 

tanks and water required to raise salmon through to harvest. Knowledge of the incoming water supply is 

important when sizing the components needed for the farm. Ground well water is naturally filtered with the 

advantage of not being accessible to wildlife, which is one major disadvantage of lake and river water. 

Temperature fluctuations are less with well water compared with other sources. In contrast, river or lake 

water should be filtered and sterilised before entry into a recirculation facility given the possibility for 

there to be an array of pathogens present. Municipal water will enter filtered and disinfected, but also with 

the added costs associated with dechlorination and commercial water rates. The proposed water should be 

tested before use to determine whether pathogens or other water quality parameters may threaten the 

incoming water supply. All incoming water should be treated prior to entering the system using UV 

irradiation and/or ozonation regardless of the water source. UV for disinfection can be less expensive to 

run than ozone, but the condition of the water will dictate when either can be used. Ozone is more 

appropriate for water that is turbid even for short times of the year, which would cause low UV 

transmittance and therefore effectiveness (Summerfelt, 2003). Filtration of incoming water should be 

considered in cases where water is turbid as a result of suspended sediments. 

261. An intensive recirculation system can reuse up to 99 % of the water passing through the system 

and tanks. To do so, the solids must first be removed from the system as fish health and equipment can be 

compromised if water is not cleaned effectively. Relatively low concentrations of total suspended solids 

(TSS) can be maintained by using a dual drain culture tank and drum filters. However, a radial-flow 

separator has been shown to have twice the removal efficiency compared with a swirl separator of the 

identical size and surface loading rate (Davidson and Summerfelt, 2004). Particulate filtered water then 

likely moves into a biofilter, which is the most critical component of the system as it converts toxic 

ammonia to less toxic nitrate. Salmon will generate 45 g of ammonia for every 1 kg of feed consumed that 

has 45 % protein (Wright and Arianpoo, 2010). Biofilters contain both nitrifying bacteria and heterotrophic 

microorganisms that metabolise total ammonia (Summerfelt and Sharrer, 2004). The nitrifying bacteria 

require high levels of oxygen to convert total ammonia to safe nitrate ammonia. During the conversion the 

bacteria produce CO2 and this can be a high contributor to the total CO2 for the system at up to 37% 

(Summerfelt and Sharrer, 2004). Outgoing water from the biofilter therefore needs to be stripped of this 

produced CO2 by passing through a degasser. Reused water can be sterilised after the biofilter using an UV 

or ozone to eliminate any bacteria or fungus created in the system.  

262. Temperature manipulation capability is one advantage of using land-based rearing although this 

might come at an exorbitant cost. Land-based facilities are typically built to run at a constant temperature 

throughout the production cycle to allow the fastest rate of growth at optimal fish health. Oxygen 

concentrations should also be maintained at 8-11 mg/l, which may require oxygen to be artificially 

introduced into the system. Providing optimal temperature and other water quality parameters could allow 

faster growth of production fish thereby offsetting some of the additional operational and capital 

expenditure costs. 

263. Photoperiod can also be manipulated and controlled in land-based systems. From a feeding 

perspective use of 24 hour light photoperiod would be optimal to provide additional feeding opportunities. 

However, when a 24 hour period was provided to Atlantic salmon in a land-based facility there was a 

36.6% grilse rate (Summerfelt et al., 2013). Additional research is therefore needed to determine the best 

photoperiod to optimise growth rates while also preventing early maturation.  
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11.5.3. Fish sizes, densities, growth rates 

264. Growth is a key aspect in land-based farming. The modular concept depends upon all stages to 

grow to a predicted weight at a specific time to keep stocks moving through the farm (Figure 18). Land-

based systems allow conditions to be manipulated to decrease the time to harvest. Indeed, one growout trial 

reported that salmon reached an average weight of 4.7 kg at 372 days post stocking in a land-based facility 

compared to 626 days for the same strain to achieve the target weight when reared in net pens 

(Summerfelt et al., 2013). Closed containment land-based operations theoretically allows a continuous 

sequential harvest strategy to be employed to maximise utilisation of capital assets, minimise energy costs, 

and provide a steady production harvest (Wright and Arianpoo, 2010). A sequential harvest is required to 

ensure raised salmon are removed when necessary to keep stocking density under 50 kg/m
3
; however, land-

based systems often boast their abilities to operate around 80 kg/m
3
.     

Figure 18.  Growth phases of a modular land-based farm 

 
 Source : Wright and Arianpoo, 2010 

 

11.5.4. Feeds (types, sources, composition) and feeding (rates, methods) 

265. Feeding can be restricted depending on water quality parameters in land-based systems. In order 

to keep feeding rates at a high level the condition of the water must be excellent. Feeding can occur 

throughout the entire photoperiod and as the salmon grow they need to be fed larger meals less often. This 

requirement will allow tanks to be staggered in feeding to keep the total demand on the system low so not 

to overwhelm the biofilter. Commercial Atlantic salmon diets are designed for optimal growth and food 

conversion ratio in open net pens. Similar extensive nutrition research is required to develop a diet 
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specifically made to optimise fish performance while minimising the impact on the recirculation system 

and receiving environment from any effluent. For example, a specific Atlantic salmon diet might need to 

be developed and used if the water temperature will be maintained around 15°C. Farmed Atlantic salmon 

raised in land-based facilities have displayed issues associated with an off flavour from the flesh that is 

thought to be caused by the high level of water recirculation. Depuration in flow through water for a 

specific duration (up to 10 days) is considered a primary means to address this issue, but perhaps a 

finishing diet might also be developed to assist in creating a more wholesome flesh taste for market.   

11.5.5. Diseases, pathogens, and parasites 

266. The advantage with the closed system is the ability to filter and sterilise incoming and 

recirculated water to assist in removal of pathogens. This advantage was evident from a trial run in an 

intensive recirculation system in West Virginia where there were no drugs or chemicals used to treat the 

salmon. Additionally, the salmon had not been vaccinated. Salt was used to treat any low level fungus 

outbreaks and weak fish were removed from the system to keep the population strong (Summerfelt et al., 

2013). This same advantage becomes a significant disadvantage should a pathogen ever get introduced into 

the system. Evidence suggests that fish present may be treated to alleviate fish health concerns from many 

diseases; however, the prospect of fully removing many pathogens following introduction into a system is 

very low.  

11.5.6. Drug treatments, vaccines, and usage of chemicals for cleaning and disinfection 

267. Land-based closed-containment systems must be treated with vigilance for biosecurity. If a 

problem occurs then the tanks should be able to be isolated or operated as a quarantined area. If a fish 

health problem occurs with a facility using a high level of recirculation then all salmon could be rapidly 

exposed. It is important that all technicians are trained to notice any abnormal behaviours or conditions 

within the fish stock and are able to deal with these issues quickly. All equipment and tanks should have 

cleaning and regular maintenance schedules to reduce organic loading. 

11.5.7. Disposition of wastes and carcasses  

268. Phosphorus removal is one of the largest environmental concerns for a land-based aquaculture 

facility. Aquaponics can be integrated to help remove high nitrite levels from the system as the phosphorus 

will be absorbed as nutrients by the plants. If this cannot be used then the phosphorus will need to be 

removed using different effective methods. Each kg of feed averages 0.25 kg of solids in the water and 

recirculation systems provide an opportunity to remove much of the phosphorus levels through solid waste 

removal using mechanical filtration. A combination of equipment types and methods can be used including 

drum filters, swirl separators, foam fractionators, and settling ponds.  

11.6. Transportation for grow-out, harvest and processing 

269. Transportation typically occurs in well-boats. 

11.7. Harvest and processing 

270. At least two to three days of starvation is recommended (depending on temperature) to eliminate 

the contents of the gut and to calm the fish down before transport and harvest. 

271. Some companies grade their fish before slaughter because populations may have considerable 

individual variation. It is more common especially within large operations to use well-boats with integrated 

grading equipment to pump the fish on board. Fish smaller than a predetermined size fall through the grids 

and are returned to an empty cage for continued growout. 
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272. There is some variability in harvesting techniques. One methodology is to stun the salmon using 

an automated stunner or a blow to the head. Gill arches are then cut to allow the salmon to bleed before 

immersing them into ice water. At this point, the salmon are often transferred to the processing plant for 

gutting and additional processing depending on the market – head on gutted/dressed, fillets, portions, etc. 

A preprocessing step might require that the fish be gutted prior to transfer to the processing plant if the 

processing plant is not located near the sea cage sites. 

12.  Biocontainment  

12.1. Chromosome set manipulation (Triploidy) 

273. Triploidisation is considered the most effective method for producing sterile fish for aquaculture 

(Benfey, 1999; Benfey, 2015; Tave, 1993). The methodology to produce triploid fish routinely results in 

populations that are >98% triploids (Benfey 2015). The methods for producing sterile fish are simple, 

easily applied on a commercial scale, and the required investments quite low (Benfey, 2015). Triploid 

salmon are sterile because they cannot produce a balanced set of chromosomes when the three homologous 

chromosomes are to be distributed among the developing gametes. There are three ways to induce 

triploidy: 1) duplication of the paternal genome, 2) duplication of the maternal genome, or 3) crossing 

tetraploids with diploids (Benfey, 2009). Induction of triploidy by duplication of the paternal genome has 

been achieved in rainbow trout, but not in Atlantic salmon (Benfey, 2015). Triploidy can be easily induced 

through duplication of the maternal genome by preventing the second polar body from leaving the egg 

shortly after fertilisation. The method to induce triploidy in salmon involves the use of heat or hydrostatic 

pressure (Benfey and Sutterlin, 1984; Johnstone, 1985; Quillet and Gaignon, 1990; Johnstone et al., 1991). 

Use of hydrostatic pressure is the preferred method for inducing triploidy as it is easier to ensure all eggs 

are exposed to the identical treatment in a sealed pressure vessel and the optimum pressure treatment is 

independent of temperature (Benfey, 2009). A female triploid salmon is for all practical purposes sterile 

and does not produce functional gametes. A male triploid salmon is also sterile as it does not produce 

functional sperm. Males still go through sexual maturation and can produce sperm capable of fertilising 

eggs (Fjelldal et al., 2014); however, the embryos produced from a triploid male are aneuploid and die 

early in development (Benfey, 2015). Farm operations that raise triploid salmon are therefore normally 

based on monosex female populations to avoid losses in growth experienced by males that still undergo 

sexual maturation, and the potential loss of wild breeding potential should a male triploid escape and mate 

with wild diploid females.  

274. Production of triploid salmon has been tested in Canada (e.g. Friars and Benfey, 1991; O’Flynn 

et al., 1997; Pepper et al., 2004), France (Quillet and Gaignon, 1990), Ireland (Cotter et al., 2002), Scotland 

(Johnstone et al., 1991; Johnstone, 1993; McCarthy et al., 1996), Norway (Oppedal et al., 2003), Tasmania 

(Jungalwalla, 1991) and United States (Galbreath et al., 1994; Galbreath and Thorgaard, 1995). All-female 

triploid Atlantic salmon are presently commercially raised in the Tasmanian aquaculture industry 

(Benfey, 2015). Use of triploids in production may have some risks. Triploids have experienced higher 

mortalities in comparison to diploids (Hansen et al., 2007) throughout the production cycle and have a 

lower tolerance for suboptimal environmental conditions (Altimiras et al., 2002; Ojolick et al., 1995; 

Pepper et al., 2004; Hansen et al., 2015). The frequency of lower jaw, gill and vertebral deformities may 

also be higher in triploid populations (Sutterlin et al., 1987; Jungalwalla, 1991; Sadler et al., 2001; Pepper 

et al., 2004; Lijalad and Powell, 2009; Powell et al., 2009; Fjelldal and Hansen, 2010; Leclercq et al., 

2011; Fraser et al., 2013; 2014; Taylor et al., 2013; 2014; Tibbetts et al., 2013). Post-smolt triploid Atlantic 

salmon are more prone to cataracts (Wall and Richards, 1992; Leclercq et al., 2011; Taylor et al., 2014;  

2015). However, this occurrence can potentially be reduced by an elevated level of dietary histidine, which 

might also improve feed conversion efficiency (Taylor et al., 2014). Triploids have a lower relative 

abundance of B-cell lymphocytes (Fraser et al., 2012), may have more antibiotic resistant intestinal 

bacteria (Cantas et al., 2011), reduced innate immune response to bacterial pathogens (Langston et al., 
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2001) and potential issues with adhesions and pigmentation after vaccination (Fraser et al., 2014; Larsen 

et al., 2014). However, triploid Atlantic salmon are also less likely than escaped diploids to outcompete or 

displace native salmon for these reasons (Benfey, 2015). Research on triploids is ongoing with recent 

projects that are adding to the body of knowledge on triploid Atlantic salmon, while taking advantage of 

advances in salmon husbandry and genetic improvements to potentially remove many of the current 

drawbacks to the use of triploids in a commercial setting (Benfey, 2015). 

12.2.  Sex control technologies 

275. There are two methods to create all-female Atlantic salmon. The first method produces all female 

diploid Atlantic salmon by irradiating sperm before fertilisation, followed by administration of heat or 

pressure shocking so only the two maternal chromosome copies will be functional producing gynogenetic 

diploid (all-female) offspring (Kirpichnikov, 1981; Quillet and Gaigon, 1990). The second method 

produces female fish that function as males and can later be used as broodstock to produce all female 

triploids. All female triploids are desirable because, as mentioned previously, they are sterile and 

reproductive organs do not develop. Genetic female Atlantic salmon (XX), may also be treated with 

androgens or aromatase inhibitors that allow them to develop as functional males. These ‘neomales’ yield 

all-female offspring when crossed with normal females (Benfey, 2009). The androgens used are 17α-

methyltestosterone (MT) and 17α-methyldihydrotestosterone (MDHT) administered through the diet or 

bath treatments. At first feeding, fry are fed a diet containing a target concentration of MT or MDHT, 

resulting in females having functional sperm-producing testes. The immersion treatments have been shown 

to be simpler and effective, suitable for commercial scale use in hatcheries, and offer other advantages 

compared with dietary manipulation treatments (Lee et al., 2004). Administering MT or MDHT requires an 

identification/confirmation of the neomales (having only functional XX chromosomes) compared with 

normal males (XY chromosomes).   

276. Neomales can be distinguished from normal males within a population of Atlantic salmon by 

using a sex-specific genetic marker that was initially developed for rainbow trout, but has since been 

adapted for Atlantic salmon. Previously, this identification was difficult and required examination of 

dissected testes for abnormalities (constrictions, diminished or absent sperm ducts, presence of some 

ovarian tissue with visible oocytes) (Benfey, 2015). Eggs are fertilised with the sperm of confirmed 

neomales and then the newly fertilised eggs undergo pressure treatment (as described above) to produce 

all-female triploid progeny. 

13. Interactions with the external environment 

13.1. Escapees  

277. Atlantic salmon escape from hatchery and marine growout sites despite the general economic 

incentive of the farm operator to retain all fish for eventual harvest. Escapes may be classified as either 

chronic or acute losses as follows: 

 Chronic losses are represented by the potential leakage of stocked fish to the outside environment 

occurring anytime during the grow-out cycle. Chronic losses may occur without the knowledge of 

the farm operator, are sometimes difficult to detect, and can potentially occur over an extended 

period of time, thus making it very difficult to ascertain the actual number of losses. Examples 

include escapes through typical handling and site operations occurring outside of the confines of 

the containment netting, such as during size grading. 

 Acute losses tend to occur from a single severe event, sometimes without notice, which may lead 

to the escape of a significant number of fish. Acute losses may follow severe weather, devastating 
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predator breach of the containment netting, catastrophic failure of equipment, or unexpected 

vandalism of the containment net. 

 

278. Farm escapes may pose a risk to wild populations and ecosystems based on: a) the likelihood 

(probability) for escape at a specific time, b) the magnitude (numbers) of escapees involved, and c) the 

impact on wild populations or ecosystem (Naylor et al., 2005). Financial losses to the operator and risks to 

wild populations are only eliminated if the farm successfully contains all Atlantic salmon stock through to 

harvest. 

279. Recapture of escapes directly by the fish farm staff, a third party contracted by the industry or 

regulatory agency is often cited as a potential means to eliminate the impact from escapes. The 

implementation timeline, effort duration and spatial boundary for the recapture will all limit the 

effectiveness to recapture Atlantic salmon based on the reported escaped fish behaviour. For instance, 

Solem et al. (2012) reported that half of the tracked Atlantic salmon 12 hours following release covered an 

area of 17.17 km
2
, while all of the tracked escapes encompassed 226.29 km

2
. The required recapture effort 

will also need to be significantly more than 7 days and beyond the site boundary. Skilbrei and Jørgensen 

(2010) reported that an effort over 4 weeks and 40 km from the release site was required to recapture 

37.8 % and 44.6 % of the Atlantic salmon that were 5.5 kg and 1.5 kg, respectively, following release in 

September. 

13.1.1. Numbers and proportion (compilation by country)  

280. Escape of Atlantic salmon from aquaculture facilities occurs in all jurisdictions allowing 

commercial aquaculture operations. Naylor et al. (2005) summarised regulations associated with 

aquaculture containment and escape reporting and monitoring by region up to 2003. Thorstad et al. (2008) 

provided a review of documented incidences of Atlantic salmon escapes from fish farming activities 

located in numerous jurisdictions globally. Acquiring a complete picture of the global numbers and 

incidences of Atlantic salmon escapes is not practical primarily due to the general lack of official data 

available from the majority of Atlantic salmon farming jurisdictions. 

281. The lack of reliable escape data is further exasperated by the difficulty to enumerate escapes from 

single chronic or acute events and escape reporting is expected to underestimate the actual number of 

escapes per incident. Chronic leakage or incidents resulting in a small number of escapes are generally 

unreported or not reported if considered below a government-specified threshold in some jurisdictions. 

Further, escape numbers are self-reported by the farm operator and tends to be optimistically 

underestimated following severe acute incidents. In reality, the only quasi-accurate inventory number of 

Atlantic salmon raised within each net pen, site and region is acquired after the Atlantic salmon have been 

harvested and enumerated while being packed for sale. Even then the discrepancy between stocked versus 

counted mortality and harvested fish can be great and there may be substantial numbers of unaccounted for 

or unexplained escapes. Regardless, the level of underestimation of farm escapes is considered to be quite 

high by some observers, with Sægrov and Urdal (2006) estimating that only 12-29 % of the actual number 

of escapes may be reported. A more recent estimate based on a number of experimental releases suggests 

that the actual number of escaped farmed salmon is two to four times higher than the reported number 

(Skilbrei and Jørgensen, 2010). 

282. Norway and Scotland both require mandatory reporting of escapes and maintain publicly 

available databases associated with these numbers and incidents (http://www.fiskeridir.no/english/statistics 

and http://www.scotland.gov.uk/Topics/marine/Fish-Shellfish/18364/18692/escapeStatistics, respectively). 

Jensen et al. (2010) analysed fish escape statistics from the Norwegian Directorate of Fisheries as reported 

from farm operators. The paper described several broad categories of potential escape events from 

September 2006 to December 2009. The analysis indicated that the most prevalent causes of Atlantic 



 ENV/JM/MONO(2017)64 

 83 

salmon escape were the result of equipment structural failures (68 % of all reported escapes), land-based 

related incidents (11 %), farm operational failures (8 %), external factors (8 %) and for unknown reasons 

(5 %). Reported structural failures occurred as a result of large storm events that may combine with farm 

component fatigue coupled with human error when initially installing the site or subsequently 

operating/maintaining its components. During the 2009-2012 timeframe, there were a total of 506 000 

saltwater and 59 492 freshwater Atlantic salmon escapes reported to the authorities by fish farm operators 

in Scotland. The primary causes for these escapes as a percentage of total escapes for the consolidated 

period is provided in Table 6. 

Table 6.  Causes and numbers of Atlantic salmon escapes in the Scotland Atlantic salmon aquaculture industry 

during the period of 2009-2012 as reported by fish farm operators 

Freshwater 

Reported Cause of Escape Reported # Escaped % of Total # in Period 

Hole in Net (Unknown) 0 0 

Hole in Net (Predator) 43,927 73.83 

Human Error 12,385 20.82 

Equipment Failure 0 0 

Weather 3,180 5.35 

Total 59,492 100.00 

 

Saltwater 

Reported Cause of Escape Reported # Escaped % of Total # in Period 

Hole in Net (Unknown) 83,332 16.47 

Hole in Net (Predator) 29,740 5.88 

Human Error 13,262 2.62 

Equipment Failure 1,092 0.21 

Weather 378,574 74.82 

Total 506,000 100.00 

 

13.1.2. Survival and migration  

283. Survival of escaped Atlantic salmon is affected by many factors. Hansen et al. (1987) found that 

farmed salmon tagged and released during summer in Norway were apparently homeless and some of the 

immature fish were captured north of the Faroe Islands. Hansen and Jonsson (1989; 1991) studied tagged 

post-smolts held in saltwater and sequentially released for one year finding interannual variation in 

migration pattern and survival with poor survival in salmon that were released during later summer and 

autumn, and poor homing precision of fish released during winter. Hansen (2006) found large salmon 

released (‘escaping’) during the winter at Bersagel in Norway did not home back to the area where they 

escaped, but were recaptured along the coast in marine fisheries and rivers to the north and southeast of the 

release site. All recaptures of salmon released at Meløy were north of the release site. Salmon travelled a 

bit differently here, but there was no consistent evidence that they were homing to rivers close to the 

release site. The geography of the two release sites was quite variable (Hansen, 2006).  

284. When escaping from marine net pens, the survival and dispersal of farm salmon depend on the 

time of year they escape. Winter escapes of farm salmon are associated with high mortality and wide 

dispersal (hundreds of kilometres); postsmolts escaping during spring and summer seem to survive better 

and disperse to nearby rivers of the marine location (Hansen et al., 1987; Hansen and Jonsson, 1989; 1991; 

Skilbrei and Jørgensen., 2010). Farmed adult salmon escaping from sea cages in the spring and summer, a 

few months before sexual maturity, have a relatively high survival (Hansen, 2006; Chittenden et al., 2011). 
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285. Farm salmon tagged in the feeding areas off the Faroes have poorer survival than wild fish tagged 

in the same area (Hansen and Jacobsen, 2003). Farm escapes seem to approach the coast and enter rivers 

later in the season than wild fish, many of them after the angling season (Fiske et al., 2001). There is a 

significant correlation between the intensity of fish farming in an area (estimated as density of farms, or 

total numbers of smolts put into net pens) and the occurrence of escaped farm fish in the rivers 

(Fiske et al., 2006).  

286. Juvenile stages of farm fish escaping into fresh water locations have a migratory behaviour that is 

more similar to wild fish. Generally, the homing precision of adults released as freshwater juveniles or as 

smolts in rivers is much higher than that for fish escaping from or being released at marine sites, without 

any connection with a river (Hansen and Jonsson, 1994; Hansen and Quinn, 1998). However, even when 

migrating in the same river, the homing precision of farm fish is lower than that of wild fish. Moreover, 

farm salmon from the commercial strains home less well to a river than farm fish developed from the local 

population (Jonsson et al., 2003). 

13.1.3. Reproduction  

287. Escaped Atlantic salmon have been shown to spawn in fresh water (e.g. Gausen and Moen, 1991; 

Crozier, 1993; Butler et al., 2005) at which time they interbreed with other cultured salmon (if present) and 

wild salmon. Their reproductive success is less than that of wild salmon (e.g. Fleming et al., 1996; 1997; 

2000). This is partially a result of how long the salmon have been escapees and how successful the escaped 

salmon have been at foraging in the wild. Commercial pelleted feed is made for a growing salmon and 

varies from a broodstock diet (see previous sections). When escaped salmon introgress with wild salmon, 

they may be reducing the fitness of a population as the wild salmon have genetically successfully adapted 

to a specific area, whereas the cultured salmon have been selectively bred for traits important to the 

industry. The only way to prevent escaped salmon from interbreeding with wild salmon is to make the 

cultured salmon functionally sterile (see Biocontainment section above). 

288. Experiments in stream tanks designed to simulate natural breeding conditions suggest that 

escaped farmed salmon typically have lower spawning success than wild salmon (Fleming et al., 1996; 

1997; 2000; Weir et al., 2004). When farmed salmon are kept in a fish farm until just before spawning, 

their spawning success is very much reduced relative to wild salmon. Farmed males attain only a few 

percent of the spawning success of wild males, whereas farmed females may have about a third the success 

of wild females (Fleming et al., 1996).  

289. Even when the fish have been in culture for only half a generation, as in sea/ocean ranching (i.e. 

from fertilisation until the smolt stage), the spawning success of males may be halved relative to that of 

wild fish. Sea-ranched females, on the other hand, seem not to experience reduced spawning success 

(Fleming and Einum, 1997). 

290. Successful spawning of farmed Atlantic salmon escaping to Norwegian and Scottish rivers has 

been documented on the basis of observations of distinct pigmentation differences between the eggs of 

wild and farmed fish (Lura and Sægrov 1991a; 1991b; Webb et al., 1991). Such analyses suggested a mean 

farmed female spawning success of 82% relative to wild females in six Norwegian rivers (Lura, 1995). An 

experimental release of farmed salmon in the River Imsa indicated that they had 19% reproductive success 

(i.e. breeding and early survival) of native fish (Fleming et al., 2000). In extreme situations, like in the 

River Vosso, at a time when few wild females were present, nearly all eggs may have been spawned by 

escaped farm females (Sægrov et al., 1997). 

291. Males maturing sexually at the parr stage are known to fertilise a variable proportion of eggs 

during the spawning of anadromous individuals (Jones and Hutchings, 2002). Experiments by Garant et al. 



 ENV/JM/MONO(2017)64 

 85 

(2003) and Weir et al. (2005) suggest that mature male parr resulting from crosses between escaped farmed 

salmon, or between farmed and wild fish, may attain an individual spawning success up to 4 times higher 

than that of wild offspring. The two experiments were, however, quite similar with respect to the total 

proportion of offspring fathered by parr (24% and 23%, respectively).   

13.1.4. Ability to establish population  

292. Outside the natural range of the species, deliberate and accidental releases of Atlantic salmon 

have failed to establish self-reproducing populations, with very few exceptions (MacCrimmon and 

Gots, 1979). Freshwater resident populations appear to have established in Argentina and New Zealand 

(Lever, 1996). Naturally produced offspring of Atlantic salmon have recently been found in rivers in 

British Columbia (Volpe et al., 1999), likely as a result of successful spawning of escaped farmed salmon. 

Whether or not this will lead to self-sustaining populations, remains to be seen. 

293. The failure of introductions of Atlantic salmon to establish sustained populations, in spite of 

hundreds of release attempts on several continents, is in stark contrast to brown trout introductions which 

have led to self-sustaining populations in North America, South America, Africa, and Oceania 

(MacCrimmon and Marshall, 1968). The reasons why Atlantic salmon have failed where brown trout have 

succeeded are not known, although several hypotheses can be entertained (Gross, 1998; Waknitz et al., 

2002). 

294. Within its natural range, Atlantic salmon readily establishes self-sustaining populations following 

human intervention to open new river stretches by building fish ladders (Jones, 1959), or by improving 

water quality (Hesthagen and Larsen, 2003). Releases appear to speed up the recolonisation process in 

comparison with natural recolonisation. 

13.1.5. Ecological (non-genetic) effects  

295. Escaped farmed salmon are likely to survive at least temporarily in the wild, because the 

environment has the ability to support their needs for food and shelter. It is possible and likely that they are 

in competition with other Atlantic salmon (wild or escaped) and potentially other species. There are many 

areas where overfishing, overexploitation, industry, pollution, etc. have created habitat that is open and 

underutilised as well. However, generations of selective breeding and the structured aquaculture 

environment (e.g. regular feeding to satiation decreasing competition) put escaped farmed Atlantic salmon 

at a disadvantage to wild Atlantic salmon or other wild species with regards to altered spawning behaviour, 

subsequent survival of eggs, altered predator avoidance and competitive ability (see Bridger and 

Garber, 2002; Thorstad et al., 2008). Escaped farmed salmon appear to consume similar food resources as 

wild salmon on feeding grounds in the Atlantic Ocean, but it is unlikely that Atlantic salmon production is 

limited by the availability of food and food competition from escaped farmed salmon (Thorstad et al., 

2008). Offspring of escaped farmed Atlantic salmon show high growth rate in the wild, especially if 

feeding conditions are favourable, and have in artificial streams been shown to reduce early survival of 

wild juveniles (Sundt-Hansen et al., 2015). 

13.2. Pathogen transfer  

296. The flow of pathogens can occur readily between wild and domesticated stocks of finfish due to 

the connectivity of the aquatic environment in which they live. As aquaculture continues to expand and 

given the dynamic nature of intensive aquaculture, there are multiple pathways of transmission between 

wild and farmed fish, and in the case of viral pathogens, some unique drivers of viral adaptation (Kurath 

and Winton, 2011). Theory predicts that common aquaculture practices may favour evolution toward 

higher pathogen virulence. However, theory also predicts that viruses, in particular, move from wild fish 
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reservoirs to infect domestic fish in aquaculture more readily than viruses from domesticated fish move 

across the interface to infect wild stocks. This is because, among other things, the selective pressures that 

favour higher virulence pathogens in aquaculture are not present in wild stocks (Kennedy et al., 2015). 

13.3. Drugs and chemicals  

297. Drugs and chemicals that are used on salmon farms will typically be released directly into the 

surrounding marine environment, usually without any prior treatment or removal. For this reason, most 

countries have strict requirements on how and when the chemicals and drugs are used, and they undergo an 

extensive evaluation prior to approval to insure that their use will not result in significant environmental 

impacts outside of the immediate farm area.  

13.4. Feed and faeces  

298. Waste feed and faeces pass through cages and into the benthic environment. Countries with 

salmon aquaculture have benthic monitoring programs that track changes to the benthic environment to 

prevent negative effects. Atlantic salmon cages are often attractants to benthic or other organisms for these 

reasons (presence of feed and faeces). 
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PART III – GENETICS OF ATLANTIC SALMON 

14.  Genetic information 

299. The Atlantic salmon has long been recognised as a phenotypically variable species. For example, 

the variation in its life history, migrations, growth rate and body size at maturity is matched by few 

vertebrates (Allendorf et al., 1987; Hutchings and Jones, 1998). The large phenotypic variation is not, 

however, necessarily associated with greater genetic variability. A higher susceptibility to environmental 

factors such as temperature, food and density is part of the explanation why salmon and many other fish 

species are more phenotypically variable than other vertebrates.  

300. In order to obtain knowledge about the level and distribution of genetic variation in Atlantic 

salmon, one needs to study variation directly at the level of genes, their building blocks (nucleic acids), 

their direct products (proteins) and/or their large-scale organisation (chromosomes). Genetic variation can 

also be inferred from controlled experiments where the phenotypes of inter-related crosses are compared 

under ‘common-garden’ standard conditions, as in quantitative genetics, or by studying how gene variants 

or phenotypic characters vary across environments, as in ecological genetics. Recently, major international 

research initiatives – merging molecular and quantitative genetic approaches – have been initiated to study 

the entire genome of Atlantic salmon with an aim to map the genes that are important for performance 

traits. This chapter makes use of all of these pieces of information to describe the genetics of Atlantic 

salmon. 

14.1. Cytogenetics 

301. The ancestor of all extant salmonids is believed to have undergone genome duplication some 25-

100 million years ago (Allendorf and Thorgaard, 1984). The duplication of a diploid genome 

(tetraploidisation) is still detectable in the form of duplicate loci for many genes in Atlantic salmon and 

other salmonids, and thus, these species may be considered pseudo-tetraploid. The whole genome sequence 

of Atlantic salmon, including duplicated regions was recently published (The Atlantic salmon genome 

provides insight into rediploidization, Lien et al, 2016). 

302. The Atlantic salmon has a variable number of chromosomes (2n = 54-60), while the number of 

chromosome arms is more stable (NF = 72-74) (Kirpichnikov, 1981). Chromosomal differences exist 

between widely separated populations of Atlantic salmon. For example, the standard European karyotype 

is 2n = 58, NF = 74, whereas Canadian fish may have 2n = 54, NF = 72 (Hartley, 1988; Phillips and 

Hartley, 1988). However, chromosome polymorphisms are also found within populations, and may even 

occur among offspring of the same female. Brown trout, a congeneric species, has 2n = 78-82 and NF = 

98-100, whereas species within the genus Oncorhynchus have 2n ranging between 52-74 and NF = 102-

108, and species within the genus Salvelinus have 2n = 76-84 and NF = 96-100 (Kirpichnikov, 1981). 

14.2. Molecular population genetics of Atlantic salmon 

303. The Atlantic salmon is strongly genetically structured compared to most fish species, particularly 

those living in the marine environment (Ward et al., 1994). Enzyme electrophoresis of protein variants (so-

called allozymes) show that approximately one third of the total genetic diversity (or heterozygosity) of 
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Atlantic salmon results from genetic differences between populations. In a study of 53 natural and hatchery 

populations from all of the distribution area of Atlantic salmon, analysing 19 enzymes encoded by 38 loci 

(genes), Ståhl (1987) estimated an FST of 0.36. FST is the relative difference between the genetic diversity in 

the total population, HT, and the average genetic diversity in the sub-populations, HS, or FST = (HT - HS)/HT. 

It varies from 0.0 when all populations have the same allele frequency to 1.0 when different populations 

are fixed for alternate alleles (Wright, 1969).  

304. The genetic differentiation between Atlantic salmon populations worldwide arises firstly from a 

major genetic dichotomy between populations from either side of the North Atlantic Ocean, and secondly 

from genetic differences between European populations in Baltic and Atlantic drainages (Ståhl, 1987). 

There is also some evidence for further regional sub-structuring, both in Europe and North America 

(Verspoor, 2005), as well as genetic differentiation of local populations between rivers 

(Bourke et al., 1997; Skaala et al., 1998; Koljonen et al., 1999) and within rivers (Møller, 1970; 

Heggberget et al., 1986; Ståhl and Hindar, 1988). Landlocked or resident populations do not form a single 

genetic grouping but belong to their respective geographic regions. 

305. In absolute terms, Atlantic salmon is not highly genetically variable as a species; the total 

allozyme heterozygosity in Ståhl’s (1987) study (HT = 0.04) is in the low range of what is found in fish 

species (cf. Ward et al., 1994). Baltic populations of Atlantic salmon are commonly less variable than 

populations along the Atlantic coast.  

306. These early findings from studies of enzyme electrophoretic variation have been supported by 

later electrophoretic studies (Bourke et al., 1997; Verspoor et al., 2005) that employed a larger number of 

genetically variable loci, on a smaller number of populations, than used by Ståhl (1987). Bourke et al. 

(1997) found some support for the divergent Baltic group of populations in Europe, and also indicated that 

this group is related to northern coastal Atlantic populations. This relationship was also noted by Koljonen 

et al. (1999) in a detailed study of Baltic populations, where populations in the western Baltic area showed 

some resemblance to a Norwegian population. Populations in the northeast (northwestern Russia and 

northeastern Norway/northern Finland) form a separate phylogeographic unit in Europe, in line with 

suggestions by Kazakov and Titov (1991) and Skaala et al. (1998). A dendrogram based on allozymes 

(focusing on variation in Europe) is shown in Figure 19, and compared with a recently published 

dendrogram (Bourret et al., 2013a) based on a large number of single nucleotide polymorphisms (SNPs) 

using a 7k SNP-chip. 
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Figure 19. SNP‐array reveals genome‐wide patterns of geographical and potential adaptive divergence across 

the natural range of Atlantic salmon (Salmo salar) 

 

  Source: Borret, V. et al., (2013) 

307. The lessons from studies at the protein level are supported by several, more recent studies of 

DNA. A genetic dichotomy between North American and European Atlantic salmon is evident in both 

mitochondrial DNA (mtDNA) and nuclear DNA (Bermingham et al., 1991; McConnell et al., 1995; 

Taggart et al., 1995; Verspoor et al., 1999; King et al., 2001; Nilsson et al., 2001; Bourret et al., 2013). 

Moreover, local populations of Atlantic salmon are genetically distinct (Galvin et al., 1995; Nielsen et al., 

1996; Sánchez et al., 1996; McConnell et al., 1997; Norris et al., 1999) and a significant relationship exists 

between geographic and genetic distance (“isolation by distance”) on both small and large geographical 

scales (King et al., 2001; Primmer et al., 2006). Analyses of DNA microsatellites extracted from archived 

scales suggest that the local genetic structure of Atlantic salmon may be temporally stable, even over 

several decades (Nielsen et al., 1997; 1999; Tessier and Bernatchez, 1999; Vähä et al., 2008; Glover et al., 

2012). Comparative genetic analyses at several institutions in Europe have recently been carried out in 

order to create a large database of microsatellite genotype data in Europe and North America (Ellis et al., 

2011). 

308. Mitochondrial DNA can be a particularly useful marker to reveal large-scale geographic 

groupings. It is maternally inherited, has a relatively high mutation rate, and lacks recombination, hence, 

current distribution patterns of maternal genetic lineages can be identified. Studies have shown good 

separation of mtDNA types between Atlantic salmon from North America and those from Europe 

(Bermingham et al., 1991). There is also a distinction between European coastal (Atlantic) populations and 

the Baltic populations (Verspoor et al., 1999; Nilsson et al., 2001). Baltic populations show less variation 

than Atlantic populations. As for allozymes, there is only weak evidence for clear geographic groupings 

within the Atlantic area. Populations in the northeast (Russian Arctic coast) share mtDNA (as well as 

allozyme) variants with North American populations, suggesting that early northern colonisers included 

fish of North American origin (Makhrov et al., 2005). 
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309. Molecular markers at the DNA level continue to provide more detailed knowledge of the genetic 

population structure of Atlantic salmon from local to global scales. Several glacial refuges seem to be 

involved in the colonisation of the European coasts, as well as the Baltic Sea and White Sea drainages 

(Consuegra et al., 2002; Asplund et al., 2004; Säisä et al., 2005; Tonteri et al., 2005; Verspoor et al., 2012). 

Some of the more divergent groupings of populations, e.g. the southeastern Baltic group and the White Sea 

group may have been colonised from ice-dammed lakes in the north-west part of Russia 

(Bourret et al., 2013), whereas an Iberian refuge seems a more likely origin of European populations along 

the Atlantic coast. In the far north, several refugia may have contributed to the current population structure. 

Recently, a study of 1SW and MSW Atlantic salmon populations from the three phylogeographic lineages 

of Atlantic salmon in Europe, based on using a 220,000 SNP-chip, has identified a gene that strongly 

affects sea age at maturity in salmon (Barson et al., 2015), and also revealed a mechanism for maintaining 

genetic variation by sex-dependent dominance in the heterozogytes. The same gene, vestigial-like family 

member 3 gene (VGLL3), was at the same time identified as strongly affecting male maturation in wild 

and farmed populations (Ayllon et al., 2015). 

14.2.1. Estimates of gene flow from molecular markers 

310. If we assume that salmon populations are in approximate equilibrium for molecular markers 

(meaning that random genetic drift within populations are balanced by gene flow between them), then 

Wright’s (1969) island model 

FST  = 1/(4 Nem + 1) 

can be applied to provide a rough estimate of gene flow or “the number of genetically effective migrants” 

(Nem) that are exchanged between wild populations each generation. For simplicity, Nem can be thought 

upon as the number of immigrant individuals successfully reproducing in a population. Between 

continents, estimates of FST suggest Nem << 1 per generation, and salmon populations on the North 

American and Eurasian continent seem to evolve independently. Caution needs to be exercised when 

estimating equilibrium number of migrants from genetic data. Interestingly, tagging studies also suggest 

little exchange between continents, as thousands of tagged salmon have been recaptured but less than a 

handful of individuals have been found crossing the North Atlantic to reproduce. 

311. Between natural Atlantic salmon populations occurring in different rivers on the same continent, 

estimates of Nem usually vary from 2 to 12 genetically effective migrants between rivers each generation 

(Ståhl, 1987; Bourke et al., 1997), suggesting low to modest amounts of gene flow. Tributaries to smaller 

rivers may show higher levels of gene flow, e.g. in River Conne, Newfoundland, an FST estimate suggests 

Nem > 20 on a ~10 km geographical scale (Beacham and Dempson, 1998). Tributaries to some of the 

larger rivers may show levels of differentiation similar to that between rivers, e.g. in the River Tana/Teno 

on the Norwegian/Finnish border, FST = 0.047 and Nem ~ 4 on a ~100 km scale (Ståhl and Hindar, 1988; 

Elo et al., 1994). Recent, more detailed studies of microsatellites of Atlantic salmon within the Tana/Teno 

watercourse have revealed considerable differences between mainstem and headwater streams on the one 

hand, and tributary populations on the other, with respect to effective population size and gene flow 

(Vähä et al., 2008). Also, the study estimated at what geographical scale local adaptations could develop in 

this large river system.  

312. Co-existent freshwater resident and anadromous salmon in Little Gull Lake, Newfoundland, 

showed a very low estimate of gene flow at Nem = 0.1 (Verspoor and Cole, 1989), suggesting that these 

sympatric forms are completely genetically isolated. In other cases, the evidence suggests no genetic 

differentiation between co-existing forms, which should be considered tactics within a single population. 
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14.2.2. Cultured stocks 

313. In hatchery stocks used for ranching and supplementation in Baltic rivers, Ståhl (1987) and 

Koljonen (1989) found 10-25% less within-population genetic variability (heterozygosity) compared to 

wild stocks. The relative genetic divergence between populations was higher for hatchery stocks than for 

wild stocks, consistent with the operation of founder effects and genetic drift in cultured stocks.  

314. In farmed salmon, Mjølnerød et al. (1997) found that a principal farm strain in Norway, founded 

from a number of different rivers (Gjedrem et al., 1991), had higher levels of allozyme heterozygosity than 

two wild populations, but lower levels of allelic richness. Other protein studies (Verspoor, 1988b; Cross 

and NiChallanain, 1991; Youngson et al., 1991) have shown genetic differentiation of farm strains from 

their wild origin. These studies also noted reductions of genetic variability in farm strains both in terms of 

number of alleles and mean heterozygosity. Recently, Skaala et al. (2005) compared the broodstocks of the 

five major Norwegian farm strains with four wild populations in Norway at eight polymorphic enzyme 

coding loci. The genetic distance between one farm strain and its source populations, was about 10 times 

higher than that observed between three wild populations. Mean FST was 0.161 among the farm strains, 

compared to 0.021 among the four wild populations studied. The mean number of alleles was about 12% 

lower in farm strains than in wild stocks, percentage polymorphic loci was 14% lower in farm strains, and 

mean heterozygosity was about 17% lower in farm strains than in wild stocks.  

315. DNA studies using mini- and microsatellites have demonstrated that farm salmon have even 

greater reductions in genetic variability than shown by protein studies. Clifford et al. (1998a; 1998b) found 

that an Irish farm strain of Norwegian origin had 56% of the number of alleles and 53% of the mean 

heterozygosity over three minisatellite loci compared with local wild populations. Norris et al. (1999), 

examining the same strain with 15 microsatellites, found between 52% and 80% of the alleles present in 

wild salmon. Skaala et al. (2004), using 12 microsatellite loci, found strong reductions in the number of 

alleles at all loci in the farm strains. A direct comparison of allelic variability between a farm strain and its 

wild source, showed that 50% of the alleles in the wild population were retained in the farm strain. The 

genetic differentiation observed between this farm strain and its wild founder populations was two to six 

times higher than the genetic differentiation observed among wild populations. Karlsson et al. (2010) 

found significantly lower microsatellite genetic diversity in farm strains than in wild salmon from Norway, 

although the difference was small and largely related to loss of rare alleles. On the other hand, mtDNA 

diversity was higher in some farm strains than in wild populations suggesting that when farm strains are 

made of crosses of genetically divergent populations, they can attain a high mtDNA diversity and keep it 

for many generations of selective breeding.   

316. A 7k SNP-chip was recently employed to find loci that differentiate generically between wild and 

farm salmon in Norway (Karlsson et al., 2011). A major finding was that when employing the top-ranked 

60 SNPs with respect to FST between a pool of wild population and a pool of farm strains, it was possible to 

allocate individuals to farm or wild, irrespective of population of origin (Karlsson et al., 2011). The SNPs 

discriminating farm from wild fish were located on all but 2 chromosomes and suggest that molecular 

changes have occurred throughout the salmon genome during the domestication process. 

14.3. Quantitative genetics 

317. Knowledge about the genetic basis of biological characteristics of Atlantic salmon is derived 

from aquaculture-related, quantitative genetic research, carried out for selective breeding programmes 

(Gjerde, 1993). Table 7 lists several biological characteristics of Atlantic salmon that have been evaluated 

for heritability. Heritability is generally regarded as the ratio of additive genetic variance to total 

phenotypic variance and simply reflects how much of the observed variation in a trait can be attributed to 

purely genetic effects. Hence: 
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VP = VE + VG + VI 

where VP = total phenotypic variance, VE = the environmental variance, VG = the genetic variance, and VI 

= genetic/environmental interactions. The genetic variance can be divided into additive VA and dominance 

VD genetic variance, where the former goes into the expression for heritability h
2
 = VA/ VP. Statistical 

techniques, based on resemblance between relatives in controlled breeding experiments, are used to 

disentangle genetic and environmental sources of variation. 

Table 7. Summary of heritability estimates (h
2
s) for various traits in Atlantic salmon computed from the sire 

component of variance or mixed model analysis  

          Trait 
Heritability (h

2
s) estimate 

Min – Max Mean 

   
Growth & Body composition   

Body length (cm) 0.08–0.57 0.28 

Body weight  (g or kg) 0.00–0.44 0.23 

Condition factor   0.05–0.37 0.23 

Specific growth rate (% BW/day) 0.04–0.26  0.14 

Swimming stamina 0.24 -- 

Filet colouration / carotenoid concentration 0.01–0.60 0.31 

Fat content 0.09–0.35 0.25  

Slaughter yield (%) 0.03–0.20 0.12 

Belly flap thickness 0.16 -- 

Daily feed intake (% BW) + -- 

Thermal growth coefficient  + -- 

Feed efficiency ratio + -- 

Amino acid absorption + -- 

Mineral absorption + -- 

Life-history & Survival   

Age at smelting + -- 

Age at maturity (grilse) 0.04–0.65  0.18 

Age at maturity (MSW) 0.08–0.17  0.13 

Survival (alevin / fry) 0.09–0.29  0.13 

Survival (eyed ova) 0.29 -- 

Return rate (grilse) 0.12 -- 

Return rate (MSW) 0.08 -- 

Health condition & Disease resistance   

Total haemolytic activity ( % standard) 0.04–0.35 0.20 

Resistance furunculosis (a. titre or  % survival) 0.00–0.53 0.20 

Non-specific haemolytic activity ( % standard) 0.02–0.32  0.19 

Resistance Vibriosis/Hitra (a. titre or  % survival) 0.01–0.69  0.18 

Lysozyme activity (% standard) 0.08–0.19  0.14 

Total immunoglobulins (IgM, g/l) 0.00–0.12  0.06 

Post-stress cortisol level (ng/ml) 0.05–0.07  0.06 

RBC membrane fragility 0.60 -- 

Specific haemolytic activity ( % standard) 0.29 -- 

Spinal deformities (%) 0.25 -- 

Resistance BKD (% survival) 0.23 -- 

Resistance ISA (% survival) 0.19 -- 

Resistance Salmon lice (No. sea lice) 0.19 -- 

2-antiplasmin level (% human reference) 0.19 -- 
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2-macroglobulin level (% human reference) 0.12 -- 

Fibrinogen level (% human reference) 0.11 -- 

1-antiproteinase level ( % human reference) 0.10 -- 

Resistance Diphteria toxoid (a. titre)  0.09 -- 

Post-stress glucose level (mg/ml) 0.03 -- 

Antithrombin level (% human reference) 0.03 -- 

Serum iron concentration ( g/ml) + -- 

   
+ : significant variation between full- and/or half-sib groups. 

         Source : García de Leániz et al., 2007a 

318. Many morphological, life-history, and behavioural traits show significant heritable variation both 

within and among populations of Atlantic salmon (García de Leániz et al, 2007a; Carlson and Seamons, 

2008).  Ultimately, these traits may be critical at a particular life stage(s) in influencing survival and 

reproduction, and thus overall net fitness.  In addition, some fitness-related traits may affect growth or 

development rates, which can indirectly affect survival and/or reproduction.  The timing of key life-history 

events, such as the onset of migration and spawning also influences fitness components and, although 

primarily triggered by environmental cues, has a heritable component.  

319. In general, heritability may range from near zero to over 50%, depending on the trait (Table 7). 

Heritability less than 15% would be regarded as low; 16-25% low to intermediate; 26%-40% medium to 

high, above that as high to very high (e.g. Rye and Refstie, 1995). Traits having high to very high 

heritability (typically morphometric and meristic traits; not shown here) would display a generally high 

degree of constancy of that character, even under conditions of environmental change. Conversely, traits 

having low levels of heritability (often fitness-related traits) could differ among stocks and within stocks 

between years largely as a result of differing environmental conditions experienced.  

320. Body size and growth rate have high and intermediate heritabilities, respectively (Table 7), and 

have been successfully targeted in selection programmes (Gjøen and Bentsen, 1997; Thodesen et al., 

1999). Moreover, many characters that correlate with body size and growth rate show similarly 

intermediate to high heritabilities. For example, age at smoltification has intermediate heritability, as does 

sea age at maturity (Table 7), which is considered a major stock characteristic (Schaffer and Elson, 1975). 

As noted above, knowledge about the genetic basis for sea age at maturity has taken a leap forward as a 

result of the publications of Ayllon et al. (2015) and Barson et al. (2015). Stocks with a given sea age at 

maturity are likely to continue to express this to some extent even if environmental conditions change. For 

example, Norwegian stocks used for salmon farming in Ireland show significant retention of their sea age 

and growth rate characteristics under culture in Ireland, even under rearing and release from a local river 

(McGinnity et al., 2003). Avoidance of early sexual maturity (i.e. at weights below market size) has been 

an important target for breeding programmes (Gjøen and Bentsen, 1997). Timing of the spawning run 

seems to have a strong heritable component (Hansen and Jonsson, 1991), even among tributaries within the 

same river system (Stewart et al., 2002). It is also likely that the timing of spawning has a genetic 

component, as spawning time seems to be adjusted to ensure appropriate timing of emergence of juveniles 

in different rivers (Heggberget, 1988; Jensen et al., 1991). 

321. Survival rates in fresh and sea water usually have low heritabilities (Table 7). Significant 

differences in marine survival rates have been reported for different strains of Atlantic salmon reared and 

ranched at the same site, suggesting retention of some degree of genetic based differences among stocks 

(Jonasson, 1996; Crozier et al., 1997). The heritability of marine survival has been calculated under cage 

culture for Atlantic salmon (Standal and Gjerde, 1987), however these studies do not replicate true marine 

survival conditions. The best information on heritability of marine survival in the wild environment for 

Atlantic salmon comes from a study of heritability of return rates in salmon ranched from Iceland 

(Jonasson et al., 1997). Heritability in return rate was generally low, ranging from 7-24% in 1SW-fish, and 
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1-7% in fish maturing after 2SW, respectively. As return rate in ranched salmon is to a large extent a 

fitness trait, comprising many life history traits such as migration behaviour; disease resistance; predator 

avoidance etc (Jonasson et al., 1997), it is not surprising that heritability for this characteristic is quite low. 

Furthermore, marine survival is known to vary in response to changing conditions at sea (Friedland et al., 

1998) indicating that any genetic basis is heavily modified by the environment. An advantage of the native 

stock in comparison with non-native stocks was found by Ritter (1975) when comparing return rates of 

hatchery stocks in rivers other than their native ones. 

14.3.1. Quantitative trait differences between cultured and wild fish 

322. Farm salmon differ genetically from wild salmon in morphological, behavioural, and ecological 

traits that are affected by domestication. Fleming and Einum (1997) compared a seventh-generation strain 

of farm salmon in Norway with its principal founder population from the wild – the River Namsen 

population. The fish were reared in a common environment and compared for several fitness-related traits. 

Farm salmon showed more robust bodies and smaller fins. Farm juveniles were more aggressive in a tank 

environment, but wild juveniles dominated in a stream-like environment. Farm juveniles were also more 

risk-prone, reappearing from cover soon after a simulated predator attack (see also Johnsson et al., 2001). 

Growth performance in farm juveniles was higher than in wild juveniles (see also Thodesen et al., 1999). 

Similar results were obtained in comparisons between another strain of farm salmon and two wild 

populations (Einum and Fleming, 1997). These results suggest that farming generates rapid genetic change 

due to genetic drift and intentional and unintentional selection in culture, and that some changes involve 

important fitness-related traits. Quantitative genetic components of fitness have recently been studied in 

cultured, hybrid and wild Atlantic salmon in Norway (Besnier et al., 2015) and Ireland (Reed et al., 2015). 

The former study identified a quantitative trait locus (QTL) with a strong effect on survival.  

323. The higher growth rate of farm salmon also carries over in the wild where farm and farm X wild 

offspring have shown higher growth rates than offspring resulting from wild X wild crosses (Einum and 

Fleming 1997; McGinnity et al., 1997; 2003; Fleming et al., 2000; Sundt-Hansen et al., 2015).  

14.3.2. Genotype-x-environment (GxE) interactions 

324. Phenotypic variation may result from three basic sources: 1) from purely genetic effects, 2) from 

purely environmental effects, and 3) from the interaction between genes and the environment (García de 

Leániz et al., 2007a). Genotype-by-environment (G×E) interactions will produce different phenotypes 

when animals with the same genetic background are exposed to different environmental conditions. For 

example, both Atlantic salmon and coho salmon that are raised in culture show altered growth, 

morphology, colouration, egg size, fecundity, and spawning ability compared to wild fish with similar 

genetics (Fleming et al., 1996, 1997; Bessey et al., 2004). Similar findings have been made for transgenic 

coho salmon (Devlin et al., 2004; Devlin et al., 2006; Sundström et al., 2007) and Atlantic salmon 

(Moreau et al., 2011; Moreau and Fleming, 2012a; reviewed in Moreau and Fleming, 2012b). These 

findings point to the difficulty of trying to study fitness-related traits in the laboratory where results may 

not mimic those for fish in the wild. The inability to predict the outcome of G×E interactions in nature 

without the use of large-scale mesocosms presents a major obstacle for modeling and understanding the 

ecology of this species.  

325. Complicating matters further, many of the phenotypic traits that are affected by environmental 

conditions also have genetic component.  Evidence for genetic variation in several fitness-related traits has 

been demonstrated both among and within populations of Atlantic salmon, and many of these traits show 

G×E interactions (Table 8). Other traits for which G×E interactions have been shown include age at sexual 

maturity, male parr maturity, timing of hatching, aggression levels, and body size (García de Leániz et al., 

2007a).  
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Table 8. Fitness-related traits with evidence of genetic variation among and within populations of Atlantic 

salmon 

Among Populations 

Trait 

 

Environment 

Within Populations 

Trait 

 

Environment 

    

Body size* Wild release & lab Body size Wild release & lab 

Digestive rate Lab Feeding rate Lab 

Growth efficiency* Lab Growth efficiency Lab 

Growth rate* Wild release & lab Growth rate Lab 

Survival* Wild release & lab Survival* Lab 

  Timing of maturity Lab 

  Stress Lab 

  Sea louse infection Lab 

    

* Asterisk indicates traits for which there is evidence of a genotype-by-environment (GxE) interaction. 

(modified from Table 7.1 in García de Leániz et al, 2007b; see original article for references supporting each trait) 

326. The available evidence suggests there are G×E interactions in all populations of Atlantic salmon 

that have resulted in the emergence of locally-adapted ecotypes with variations in life history.  Some traits 

and life history variations may have strong genetic determination (and therefore potentially could be 

altered rapidly by selective breeding efforts), whereas others are more responsive to environmental 

determinants and show greater plasticity. Phenotypic expression of a genetic trait can also vary as a 

function of the genetic background in which it is found, e.g. due to pleiotropy (i.e. where a gene influences 

multiple phenotypic traits).  

327. Phenotypic plasticity in wild Atlantic salmon populations is a broad reflection of the wide 

heterogeneity in the wild Atlantic salmon genome. Many different alleles have been documented in the 

global populations for a given gene locus. In addition, the chromosome number varies in wild populations 

from 2n = 54 to 60 as a result of a partial genome duplication during the evolution of these fish, which can 

be considered to be pseudo-tetraploid, in that for some genes, at least, there are duplicate diploid loci. This 

introduces the complications of gene/allele dosing, in addition to G×E epigenetic variability, as potential 

mechanisms for adaptation to environmental conditions. Given the complexity of this system, prediction of 

phenotypes or phenotype responses to any given environmental condition or stress is very difficult, if not 

impossible, at this time. 

14.4.  Ecological genetics 

328. Until the publication of Barson et al. (2015), the most well-defined and studied example of 

ecological genetic variation due to a single locus in Atlantic salmon is the malic enzyme locus (MEP-2*). 

Verspoor and Jordan (1989) found that a significant latitudinal variation in malic enzyme MEP-2* 

variation among rivers in both North America and Europe was strongly correlated to summer temperatures 

(see also Jordan et al, 2005). Populations inhabiting warm rivers tend to show higher frequencies of the 

MEP-2*100 allele than populations living in cold rivers, which tend to show higher frequencies of the 

alternative (*125) allele. Furthermore, just as the frequency of the*100 variant increased with increasing 

temperature among rivers, the same correlations have been observed within one Irish and three Scottish 

rivers (Verspoor and Jordan, 1989; Verspoor et al., 1991). MEP-2* variation has also been reported to be 

associated with phenotypic traits such as mean size at age, specific growth rate, and sea age (Verspoor 

et al, 2005). Experimental studies by McGinnity (1997) have found associations of MEP-2* genotype with 

survival and growth in early life-stages in addition to those with smolt age and male parr maturation. 

Recent studies have also shown that salmon population components differing in run timing have genetic 

differences at the allozyme and DNA levels (Consuegra et al., 2005).   
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329. Individual allozyme heterozygosity has been suggested to be positively associated with fitness. 

For example, heterozygous individuals may show increased developmental stability compared to more 

homozygous individuals. Blanco et al. (1990) found lower levels of asymmetry in bilateral traits 

(e.g. paired fins) to be associated with increased heterozygosity in Atlantic salmon, although this does not 

seem to be a general result in salmon (Vøllestad and Hindar, 1997). 

330. Spatial variation in life-history traits of Atlantic salmon throughout its geographic range provides 

indications about genetic differences between populations (Verspoor, 1997). Hutchings and Jones (1998) 

reviewed the variation in 13 life-history variables for 275 populations, grouped into 12 regions (8 in 

Europe; 4 in North America). Population averages within arbitrarily chosen regions differed significantly 

for traits such as parr length; mean smolt age; smolt length; grilse length; mean sea age; % grilse; % female 

grilse, and total age at maturity. However, egg to smolt survival; smolt to grilse survival and % mature 

male 1+ parr did not differ significantly among regions.  

331. Large regional differences were evident in age-specific parr length, with mainland European 

populations being larger than Canadian and Norwegian populations (Hutchings and Jones, 1998). Smolt 

age differences were also large, ranging from 1.04 years (France) to 5.85 years (Quebec) with mean length 

at smoltification also varying greatly, especially within European regions. Grilse growth rate at sea differed 

by 20% amongst the regions, being lowest in the western Atlantic and highest for British and mainland 

European populations. Mean sea age at maturity differed among regions as well. Norwegian and mainland 

European fish spend on average 60-70% more time at sea than those from Newfoundland and Ireland. 

Incidence of grilse in populations ranged from 5% for American populations to 86-91% for Newfoundland 

and Irish populations. Total age at maturity differed significantly within European regions, with southern 

European stocks on average maturing younger than Northern European stocks. The Northern European 

stocks more closely matched North American stocks.  

332. Data on temporal variation in some of these traits were available for several rivers with multi-

year data. These data indicated that the percentage of grilse varied little in some populations (5%), whereas 

it varied by up to 30% in others. Inter-annual fluctuations in grilse sex ratio ranged from 5% up to 50%, 

with 10-20% being typical. Smolt age fluctuated relatively little, varying by less than 0.5 year within 

populations. Annual changes in grilse length typically varied by around 2-3 cm, while annual changes in 

smolt length were typically less than 1 cm. 

333. Whereas part of this variation may reflect genetic adaptation to different local environments 

(Schaffer and Elson, 1975; Taylor, 1991; Stewart et al., 2002), care is needed to separate the influences of 

environment from underlying traits that have a genetic basis. One example is mean smolt age. Metcalfe 

and Thorpe (1990) testing geographical determinants of smolt age in salmon from 182 rivers across the 

N. Atlantic range, noted that although smolt age was positively correlated with latitude within three large 

regional groupings (Atlantic Canada; W Europe; E. Europe), a large amount of this variation (82%) was 

explained by annual changes in both temperature and day length. Hence, mean smolt age from similar 

latitudes in Canada and Europe would differ as a result of the differing temperature/day light regime in 

these locations. Environmental factors may also strongly influence other traits such as egg to smolt 

survival and % precocious male parr (Hutchings and Jones, 1998). 

14.5. Genomics: linking molecular and quantitative genetics 

334. Major research initiatives are underway in Canada (cGRASP; http://web.uvic.ca/cbr/grasp/) and 

Norway (SGP; http://www.salmongenome.no/cgi-bin/sgp.cgi), among other countries, to identify large 

numbers of genes and proteins related to disease resistance, reproduction, growth, environmental tolerance, 

product quality, and nutrition. These genomics-oriented projects focus on gene function and genome 

organisation through the development of genetic and physical maps and gene sequences, and data 
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interpretation using bioinformatic approaches (see http://www.ncbi.nlm.nih.gov/About/primer/ for an 

explanation of terms). It is anticipated that information generated by these projects will increase our 

understanding of salmonid evolution, improve selection programmes, and accelerate knowledge and 

investment in fish health and vaccine development. 

335. New research tools are being developed, such as linkage maps for Atlantic salmon (Moen et al., 

2004a; Gilbey et al., 2004; R. Danzmann, http://grasp.mbb.sfu.ca/GRASPlinkage.html; Lien et al., 2011), 

large numbers of DNA sequences and microarrays (Rise et al., 2004), and a large-insert genomic library 

(Thorsen et al., 2005). Application of the linkage map to challenge tests with a viral disease, infectious 

salmon anaemia (ISA), has indicated the location of gene(s) with an effect on this quantitative trait, a 

quantitative trait locus (QTL) for disease resistance (Moen et al., 2004b). One study with microarrays 

(3600 genes arrayed on glass plates) suggests different gene expression profiles of farmed and wild 

salmon, with indications of parallel changes taking place in Canadian and Norwegian farmed strains 

(Roberge et al., 2006; 2008).    

336. Linkage mapping, combined with physical mapping and karyotyping, has led to identification of 

the sex-determining locus of Atlantic salmon on chromosome 2 (Artieri et al., 2006). This may facilitate 

production of all-female lines for farming of Atlantic salmon (http://www.pac.dfo-

mpo.gc.ca/aquaculture/topics/femaleap_e.htm). Work is underway to characterise a large number of single-

nucleotide polymorphism (SNP) markers in Atlantic salmon (Hayes et al., 2007; http://www.cigene.no; 

Barson et al., 2015; www.aquagene.no). A detailed map of the salmon genome has been recently 

published, and will improve the precision of QTL mapping and marker-assisted selection. 

14.6. Inbreeding and outbreeding depression 

14.6.1. Inbreeding depression 

337. Inbreeding can be defined as the mating between individuals that are more closely related than 

individuals drawn by chance from the population. Increased rates of inbreeding in outbreeding species 

often show a decline in fitness, referred to as inbreeding depression (Frankel and Soulé, 1981). Fitness-

related traits such as individual growth rate, survival, and fecundity may be negatively affected at 5-10% 

inbreeding in laboratory populations. Moreover, most inbred lines of laboratory animals go extinct 

(Frankham, 1995; 1998). 

338. A recent review of inbreeding in salmonids suggests that a 10% increase in inbreeding results in a 

reduction in fitness from about 3-15% under rapid inbreeding to 1-5% under slow inbreeding (Wang et al., 

2002). It has proven difficult to study the consequences of inbreeding and loss of genetic variation in the 

wild. For example, Wang et al. (2002) found only one study in salmonids that was carried out in a near-

natural situation. In this study, Ryman (1970) showed inbred Atlantic salmon were recaptured at a lower 

rate than outbred individuals after release into Swedish streams. 

14.6.2. Outbreeding depression 

339. When interbreeding between genetically different populations results in a reduction in fitness 

relative to both parental genotypes, it is often referred to as ‘outbreeding depression’. The mechanisms 

responsible for outbreeding depression fall into two different categories: (1) local adaptation, where the 

hybrid population lacks adaptations to its environment, and (2) coadaptation, where the hybrid population 

contains combinations of alleles at different loci that are not adapted to each other (Templeton, 1986). 

Outbreeding depression may occur in the first hybrid generation, or among their offspring (Lynch, 1991). 

The degree of fitness loss seems to depend on how distant a cross is (i.e. the extent of genetic 
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differentiation between the parents), but quantitative data are largely lacking on the frequency and severity 

of outbreeding depression in animals (Frankham, 1995). 

340. Releases of artificially propagated salmonids provide some evidence for reduced fitness and lack 

of local adaptation of hybrids between native and non-native populations (Hindar et al., 1991). In an Irish 

experiment with first and second generation offspring of farm and wild salmon (McGinnity et al., 2003), 

the highest egg mortality occurred in the F2 hybrid group (median 68%), which was significantly higher 

than all other groups (e.g. wild 3%). Since the first generation backcrosses, which used aliquots of the 

same eggs as F2 hybrids, showed significantly lower mortality (8%) this high F2 hybrid mortality is not due 

to maternal or egg quality effects and most likely reflects outbreeding depression (McGinnity et al., 2003). 

Another case of outbreeding depression is provided by the crossing of anadromous and landlocked Atlantic 

salmon (Sutterlin et al., 1987), where lower early survival rates and morphological abnormalities were 

found in hybrid (landlocked x anadromous) offspring. 

14.7. Effective population size 

341. Principles for the conservation of genetic variation in natural populations have been related to the 

population’s effective size, which is defined as the size of an ideal population that is losing genetic 

variation at the same rate as the actual population (Wright, 1969). The effective population size is inversely 

proportional to the rate of inbreeding of the population. The effective population size also affects the rate 

of loss of heterozygosity and of genetic variance in quantitative traits, such as body size, fecundity, 

survival, and ultimately, fitness. Empirical evidence from laboratory and domestic animals suggests that 

increased inbreeding and loss of genetic variation can have negative consequences for a number of fitness-

related traits. Moreover, loss of genetic variation can reduce the possibility for a population to adapt to 

changing environments (Lande and Shannon, 1996). For short-term conservation, it has been suggested to 

maintain effective population sizes above 50 per generation to keep the rate of inbreeding low to avoid 

inbreeding depression (Frankel and Soulé, 1981). For long-term conservation, it has been suggested to 

maintain effective population sizes above 500 to 5000 in order to preserve typical levels of genetic 

variability in quantitative characters (Lynch and Lande, 1998).  

342. Effective population size has been used as one criterion for determining the extinction risk and 

setting conservation limits (CLs) of single populations (and/or species), e.g. in international (IUCN) 

guidelines for categorising threatened species (Mace and Lande, 1991). Such criteria are not well 

developed, however, for anadromous Atlantic salmon populations that are interconnected by gene flow and 

living in different environments (Hindar et al., 2004). Such a group of populations is what population 

geneticists refer to as a ‘subdivided population’ (Wright, 1969), and what many ecologists have termed a 

‘metapopulation’ (Pulliam, 1988). 

343. A theoretical model with constant local population sizes and a fixed but arbitrary pattern of 

migration, suggests that the total effective (meta)population size can be computed using numerical 

methods (Tufto and Hindar, 2003). The effective population size in a set of interconnected subpopulations 

depends on both the rate and pattern of gene flow. Low, symmetric migration rates between subpopulations 

increase the total effective size (relative to the subpopulation sizes). Asymmetric migration, on the other 

hand, decreases the total effective size. In the extreme case, that is, one-way migration, the total effective 

size eventually becomes equal to the effective size of the subpopulation emitting migrants (Tufto and 

Hindar, 2003). 

344. Precise estimates of the effective population sizes of Atlantic salmon populations have rarely 

been made. Some methods exist to find rough estimates of the effective size or of the ratio of effective to 

census size. A review of estimates from many species suggests that the effective size is often as low as 10-

20% of the census population size (Frankham, 1995); some experiments with salmonids suggest that the 
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figure may be close to 20%. With a generation time of approximately 5 years, a rough estimate suggests 

that the effective population size per generation may be close to the census size per spawning season 

(Hindar et al., 2004). In that case, the effective population size in most Atlantic salmon populations may be 

quite small, as the census size of the majority of Atlantic salmon spawning populations may be on the 

order of hundreds (Hindar and Jonsson, 1995). 

345. Recent microsatellite studies of the River Tana/Teno in Norway/Finland suggest variable local 

effective population sizes in this river system from Ne = 35-70 in some tributaries to c. 500 in mainstem 

Tana/Teno to more than 1200 in Iesjohka, a major headwater stream. Similar studies in four small rivers of 

northern Spain suggested local effective population sizes on the order of 30, or 80, depending on whether 

an open or closed migration system was assumed (Kuparinen et al., 2010).  

14.8. Empirical evidence of interspecific hybridisation (evidence from nature) 

346. Natural hybrids between Atlantic salmon and its congener, brown trout (S. trutta), have been 

detected at low frequencies in many studies, beginning with Payne et al.’s (1972) estimate in samples of 

adult salmon (mean, 0.4%). More recent studies have found higher hybridisation rates with mean values 

ranging between 0.9-13.2% (reviewed by Jordan and Verspoor, 1993).  

347. High hybridisation rates are often found where one species is introduced (as brown trout in 

Newfoundland). Fish culture may also contribute to increasing rates of hybridisation. In Scotland 

(Youngson et al., 1993) and Norway (Hindar and Balstad, 1994), elevated hybridisation rates show 

associations with the spawning of escaped farm salmon. Other causes for high hybridisation rates may be 

reduced population size of one of the species to such low levels that it is difficult to find conspecific 

spawners. Other types of disruption of the breeding system (e.g. habitat alteration) may also contribute to 

high hybridisation rates. 

348. Hybrids survive well but rarely reproduce (Anon, 1997), and thus may lower the productivity of 

local populations and in rare cases lead to introgression of genetic material from one species into the other. 

349. Interbreeding between Atlantic salmon and species from the phylogenetically closest genera 

(Crespi and Fulton, 2004), Pacific salmon (genus Oncorhynchus) and charrs (genus Salvelinus), is not 

known to occur in the wild. Laboratory experiments suggest that some intergeneric crosses may lead to 

viable offspring but are unlikely to be produced in nature (Chevassus, 1979). 

14.9. History of artificial reproduction in salmon 

350. Artificial reproduction of salmonids (brown trout) was mastered by Stephan Ludwig Jacoby in 

Germany in the middle of the 18th century. From the 1850s onwards, this technique was used to 

supplement populations of several salmonid species, including the Atlantic salmon, all over the northern 

hemisphere (stock enhancement, Egglishaw et al., 1984). 

351. Following developments of salmon rearing technologies, releases of juvenile Atlantic salmon at 

the smolt stage (after one or more winters in a hatchery) became widespread during the 1950s, whereas the 

first successful attempts to raise Atlantic salmon to market size in marine enclosures were carried out in 

Norway from the late 1960s (Heen et al., 1993).  

14.10. Current level or status of intraspecific crosses 

352. No absolute barrier to crossing exists between Atlantic salmon from different regions of the 

distribution area, between landlocked and anadromous populations, or between cultured strains and wild 

salmon. The genetic differentiation observed between populations is therefore related to the fragmented 
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nature of the spawning habitat, the homing behaviour of migrating salmon, and the typically reduced 

fitness of interpopulation crosses (Hindar et al., 1991).   

353. Deliberate releases are used for various reasons: conservation of endangered populations, 

augmentation of non-endangered populations (i.e. enhancement, Ritter, 1997), compensation for habitat 

lost by human activities, reestablishment of extinct populations, and for increasing catch in put-and-take 

fisheries and sea/ocean ranching (Isaksson et al., 1997). Accidental releases occur when Atlantic salmon 

escape from hatcheries or fish farms. Large escapes are known to occur, particularly from net cages in the 

marine environment. One recent example is the escape of 490 000 salmon from one Norwegian fish farm 

in 2005, representing a total weight (1300 tons) which exceeded the total weight of wild Atlantic salmon 

caught in sea and river fisheries in Norway that year (Statistics Norway, 2006). 

354. Currently, the number of artificially reproduced Atlantic salmon amounts to more than 

300 million annually. The large majority of these are released into net cages for farming (Statistics 

Norway, 2010), whereas releases for sea/ocean ranching amount to approximately 8 million smolt per year 

(Isaksson, 1988; Isaksson et al., 1997).  

355. Sea-ranched salmon in the Baltic Sea, and escaped farmed salmon in Norway, represent cases 

where artificially propagated salmon may make up large proportions of wild populations. More than 45% 

of the salmon caught at sea in the Bothnian Bay during 2000 were hatchery-produced (Koljonen et al., 

2005), whereas escaped farmed salmon made up on average 11-35% of Atlantic salmon spawning 

populations in Norway during 1989-2000 (Fiske et al., 2001). 

14.11. Interspecific and intergeneric crosses 

356. Viable Atlantic salmon x brown trout hybrids are readily produced in the laboratory (Refstie and 

Gjedrem, 1975; Chevassus, 1979). First-generation hybrids seem to be intermediate between the 

two species in morphological, ecological and behavioural traits (Anon., 1997; Hindar, 1998). Some male 

hybrids are fertile and have been back-crossed with female Atlantic salmon (Wilkins et al., 1993; Anon., 

1997). Back-crosses are largely either non-viable or triploid (Galbreath and Thorgaard, 1995), and thus, 

genetic introgression between the two species must be considered a rare event (Garcia-Vazquez et al., 

2003). 

357. Hybrids between Atlantic salmon and Pacific salmon or charrs may be produced in the 

laboratory, although with typically very low early survival. In crosses between Atlantic salmon, brown 

trout, rainbow trout (O. mykiss), pink salmon (O. gorbuscha) and Arctic charr (Salvelinus alpinus), all 

combinations produced some offspring except crosses involving pink salmon females or rainbow trout 

males (Refstie and Gjedrem, 1975; Gjedrem 1979). Crosses between Atlantic salmon and Arctic charr 

were found to show a high growth rate in fresh water, but lower growth rate than Atlantic salmon in sea 

water (Gjedrem, 1979).  

358. In reciprocal crosses between Atlantic salmon and seven species of Pacific salmon, Devlin (cited 

in Waknitz et al., 2002) found only one cross (female steelhead [anadromous rainbow] trout X male 

Atlantic salmon) to produce more than 1% survival to hatch. This cross was made using cryopreserved 

sperm because the natural spawning time of the two species differs by several months. Another partly 

successful cross was made from female Atlantic salmon x male pink salmon, with 0.36% survival to hatch. 

Rearing of survivors for four years did not result in signs of sexual maturation. 

359. Production of triploid hybrids between salmonid species results in sterile fish that sometimes 

survive better than diploid interspecific hybrids. Gray et al. (1993) did not find viable triploid hybrids 

between Atlantic salmon and Pacific salmon. 
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15. Genetic and ecological information on deliberate and accidental releases 

360. Experiences from releases of Atlantic salmon within its natural range are reviewed within this 

section, as these are more relevant for discussing the genetic impacts of releases. Information is obtained 

from deliberate and accidental releases of salmon at various stages of domestication, concentrating on 

recent experiments where the performance of farm and wild Atlantic salmon has been compared in whole-

river environments (McGinnity et al., 1997; 2003; Fleming et al., 2000; Skaala et al., 2012). 

361. Cultured fish may be distinguished from their wild counterparts by differences in external 

morphology (Lund et al., 1989; Fleming et al., 2004), growth patterns in scales and otoliths (Lund and 

Hansen, 1991; Hindar and L’Abée-Lund, 1992), pigmentation (Lura and Sægrov 1991a; 1991b) (for a 

comprehensive review, see Fiske et al., 2005), molecular genetic markers (Karlsson et al., 2011), and 

growth rate (of offspring) in a hatchery (Solberg et al., 2013). However, the longer the fish have been in 

the wild, the more difficult it is to use such characters to distinguish them from wild fish. In some 

instances, fin-clipping and external or internal tags have been used to identify fish of cultured origin. 

Genetic differences between cultured and wild fish may also be used as a basis for separation of the 

two groups and their offspring (Skaala et al., 2004).  

15.1  Fate of released fish  

362. Releases of cultured, first-generation offspring of native salmon, particularly when carried out at 

an early life stage, seem to produce fish that perform similarly to naturally reproduced salmon. Larger 

differences from native salmon are found when a non-native stock is used, when the fish have spent part of 

their life in hatcheries before release (as in stock enhancement based on summer-old parr, or sea ranching 

based on smolts), and when the donor stock has been subject to selective breeding for one or more 

generations (as in accidental releases from fish farms). The relative importance of non-native origin, 

hatchery experience and level of domestication is only partly known; differences between native and 

released fish are evident even when a neighbouring wild population is compared with native fish 

(McGinnity et al., 2004).  

15.2. Genetic consequences – intraspecific 

15.2.1. Genetic data 

363. Genetic risks from introductions include homogenisation of the genetic structure of the species 

through swamping a region with a common gene pool, loss of entire populations caused by disease or 

ecological interactions, loss of local adaptations through interbreeding, and failure of populations to 

readapt to local conditions if the introductions continue (Ryman et al., 1995). The amount of genetic 

change caused by interbreeding is a function of the genetic difference between introduced and local 

populations, and the rate of gene flow between the two. Longer-term genetic impacts depend on the extent 

to which evolutionary processes in the local population counteract the genetic change generated by the 

introductions. 

364. Interbreeding between farmed and wild fish has been demonstrated experimentally in spawning 

arenas (Fleming et al., 1996), in a river following release of genetically marked fish (Fleming et al., 2000) 

and by studying genetic markers in the wild (Crozier, 1993; 2000; Clifford et al., 1998a; 1998b). Clifford 

et al. (1998a) used mtDNA variants to demonstrate that escaped farm females left offspring in two Irish 

rivers. They showed that farm female spawning was highly heterogeneous within each river with up to 

70% at some sites and complete absence in others. In addition, these authors used a bi-parentally inherited 

minisatellite locus to demonstrate the presence of pure farm offspring in the rivers. The authors also noted 

the breeding of farm males with wild females in a different part of the river from the area in which farm 
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female spawning took place. Clifford et al. (1998b), using the same two markers, showed that farm fish 

escaping into a river at the juvenile stage completed the life cycle in the wild to return to that river to breed 

and interbreed with wild fish. 

365. Other examples where molecular genetic information has demonstrated farm salmon 

contributions to wild populations come from the observation that farm and wild adults entering the same 

stream differ in allozyme allele frequencies, and that the offspring generation change occurred in the 

direction of the farm fish. If the alleles recorded are found in both parental groups, factors other than the 

successful spawning of farm fish can explain this observation. However, when the farm escapes have 

alleles that are not found in wild fish, these have been used to demonstrate farm contribution of alleles to 

the wild population (Crozier, 1993; 2000). 

366. Recently, Glover et al. (2012) analysed 21 rivers in Norway over a period of up to 30 years using 

22 microsatellites. They found temporal genetic changes in 6 populations (significantly so in 

4 populations) and a reduction in the genetic diversity among these populations over time. They found that 

these genetic changes most likely were caused by escaped farm salmon spawning in these rivers. Another 

study by Glover et al. (2013) using the SNPs that can distinguish between farmed and wild salmon, showed 

significant introgression of farmed to wild populations in several rivers. Also, a technique has been 

developed to estimate farmed to wild genetic introgression without a historical reference (Karlsson et al., 

2014). This technique has now been used to demonstrate significant genetic introgression of farmed to wild 

salmon in more than 50 wild Atlantic salmon populations in Norway (Diserud et al., 2016, in Vitenskapelig 

råd for lakseforvaltning, 2016).  

15.2.2 Phenotypic and behavioural data 

367. A review of the literature on the genetic effects following releases of non-native salmonid 

populations, suggested two broad conclusions (Hindar et al., 1991): 

 The genetic effects of (intentionally or accidentally) released salmonids on natural populations 

are typically unpredictable; they vary from no detectable effect to complete introgression or 

displacement. 

 Where genetic effects on performance traits have been detected following releases of salmonids, 

they appear to be negative in comparison with the unaffected native populations. For example, 

reduced total population size and reduced performance traits have been observed following 

introductions of non-native salmonid populations.  

368. Salmonid populations are believed to be adapted to their local environments (Schaffer and 

Elson, 1975; Taylor, 1991; Hendry and Stearns, 2004; Myers et al., 2004; Bourret et al., 2011; Barson 

et al., 2015), and thus, introduced populations or crosses involving introduced populations would be 

expected to perform worse/less than the native ones. 

15.3 Lifetime fitness and productivity 

15.3.1. Fitness and productivity in whole-river experiments 

369. The life-cycle experiments carried out in the Burrishoole system, western Ireland, studied first 

and second generation hybrids between wild and farmed salmon in the freshwater and marine life history 

phases. Three cohorts (hatched 1993, 1994, and 1998) of Atlantic salmon were released above a fish trap in 

the Burrishoole system in western Ireland. Multiple families of the following groups were studied, having 

equal representation at release: native wild (all cohorts); Norwegian farmed (all cohorts); F1 hybrid wild x 

farm (male and female reciprocal groups, 1993-94 cohorts); BC1 backcrosses to wild (1998 cohort); BC1 
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backcross to farm (1998 cohort); and F2 hybrid wild x farm (1998 cohort). As the aim of the experiment 

was to look at genetic differences, without the confusion of behavioural differences, eggs and milt were 

stripped from mature adults and artificially fertilised, and group identification determined by DNA 

profiling (see McGinnity et al., 2003 for experimental details).  

370. In the Burrishoole, farm salmon showed significantly lower representation than wild in the 

samples of 0+ parr of all three cohorts from the experimental river at the end of the first summer. ‘Hybrids’ 

(i.e., first-generation hybrids [F1Hy], second-generation hybrids [F2Hy] and first-generation backcrosses to 

wild salmon [BC1W] and farm salmon [BC1F], respectively) were intermediate or not significantly 

different from wild fish (Table 9). During the period from May 0+ to September 1+ (i.e., second year), the 

highest proportion of emigrant parr, taken in the experimental trap, was from the wild group and the lowest 

from the farm group, with ‘hybrids’ intermediate in representation. In the river 0+ parr, it was found that 

farm parr were largest in size, wild parr smallest, and ‘hybrids’ intermediate, as expected from the 

selection of farm strains for increased growth rate. Thus, downstream migration was inversely proportional 

to parr size, and proportional to cohort density over the three cohorts, indicating competitive displacement 

of wild parr by the larger farm and ‘hybrid’ fish. Although displaced wild parr were found to survive 

downstream under the experimental conditions used, such survival would not occur if suitable unoccupied 

habitat is not available. This could occur when a river is at parr carrying capacity or where the spawning 

area enters directly to sea (as may be typical for escaped farm salmon spawning in some circumstances) 

(Table 9). 

Table 9. Lifetime successes of the wild, farm and 'hybrid' groups in the Burrsihoole experiments. Results 

averaged over several cohorts where available 

Group Fertilisation 

to eyed egg 

Eyed egg to 

smolta 

Eyed egg to 

smoltb 

Smolt to adult Lifetime 

successa 

Lifetime 

successb 

Wild 1.0 1.0 1.0 1.0 1.0 1.0 

BC1W 1.0 0.89 1.0 1.0 0.89 1.0 

F1HyW 1.0 0.73 1.0 0.58 0.42 0.58 

F1HyF 0.87 0.50 0.63 0.61 0.27 0.33 

F2Hy 0.34 1.0 1.84 n.a. (0.34) (0.63) 

BC1F 1.0 0.79 1.59 0.39 0.31 0.62 

Farm 0.79 0.41 0.76 0.07 0.02 0.04 

a 
This assumes that displaced parr have the same survival as parr of the same group remaining in the experiment river, 

i.e. that the river is not at its parr carrying capacity and spare habitat is available for displaced parr. 

b
 This assumes that displaced emigrating from the experimental river do not survive, i.e. that the river is at its parr 

carrying capacity. 

Note: Survival of the wild group is taken as 1.0. Where another group is not significantly different from the wild 

group, it is also given a value of 1.0. When significantly different, then the actual survival relative to the wild group is 

used. Data for marine survival of F2 hybrids are not available and were set at 1.0. (from McGinnity et al., 2003) 

371. Adult salmon returned from sea after 1SW or 2SW. In the 1SW returns, all groups, except the 

backcross to wild, showed a significantly lower return relative to wild. In the 2SW returns, all groups, 

except farm of the 1998 cohort, showed a proportionately greater return. However, the Burrishoole 

population is primarily a 1SW stock and the wild 2SW return was only 2.5% of the total return. Overall the 

farm group showed a 0.3% return compared with 8% for wild smolts. Taking account of the differential 
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egg production of 1SW and 2SW females, total egg deposition of returning fish was significantly higher 

for wild salmon than for all groups except BC1 backcross to wild (Table 9).  

372. Another life-cycle experiment was undertaken in the River Imsa, southwestern Norway, to 

quantify the lifetime success (adult to adult) and behaviour-ecological interactions resulting from farmed 

salmon invading a native population (Fleming et al., 2000). The fish were sexually mature and had been 

selected such that native wild and farmed salmon were homozygous for different gene variants (alleles). 

Releases were made in autumn 1993 above a two-way fish trap where the population could be counted at 

the smolt and returning adult stages (see Fleming et al., 2000 for details). In parallel with the release 

experiment, farmed and wild salmon were introduced into a semi-natural spawning arena where their 

breeding performance could be closely monitored by direct observation and video 24 h per day 

(cf. Fleming et al., 1996). 

373. In the River Imsa, farm and wild adults had similar migration patterns and nesting locations; 

however, farm females spawned before wild females. Courting of females by both farm and wild males 

began shortly after release of the fish into the river. Wild males, however, courted females more often and 

retained less of their initial testes unspawned than did farm males. Offspring (age-0 parr) from the 

spawnings were sampled by electrofishing the River Imsa in autumn 1994. The proportion of wild to farm 

genotypes among the offspring (age-0 parr) from spawnings in the river had shifted significantly from the 

proportion of wild to farm spawners (Figure 20). Most of the fish were now of wild origin (65%); farm 

genetic representation occurred mainly through hybridisation with wild fish. Mitochondrial DNA analysis 

suggested that most, if not all hybrids had farm mothers. 

Figure 20. Changes in the proportional constitution of the Atlantic salmon population in the River Imsa 

following the release of native wild and farm spawners 

 

          Source : Fleming et al., 2000 
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Note: The number above each bar represents either the total population size (spawners and adult offspring) or the sample size 

examined at each life stage (age 0 and out migration). Two age groups of out-migrants existed, age 1 and age 2 and are stacked on 

top of each other for each offspring type. *potential egg deposition was 19,443 for native females and 29,388 for farm females. 

Solid bars, farm offspring; open bars, native offspring; hatched bars, hybrid offspring. (from Fleming et al., 2000, Fig. 1) 

374. Production of smolts relative to the estimated total potential egg deposition was compared to the 

population’s stock-recruitment relationship (Jonsson et al., 1998). The total production of smolts 

(i.e., migrants to the ocean) from the spawnings was 28% below that expected based on the estimated 

potential egg deposition and the stock-recruitment relationship for River Imsa (Jonsson et al., 1998). 

Moreover, smolt production by wild females was 31-32% below that expected from their estimated 

potential egg deposition in the absence of farm females.   

375. There were distinct behavioural and life history differences among the smolts. Smolts produced 

by farm fish (farm smolts) descended earlier and at a younger age than did wild smolts, and hybrids 

descended at a time that was intermediate to that of the farm smolts and wild smolts. Hybrid smolts were 

also longer and heavier than native smolts, whereas farm smolts weighed less for a given length than did 

their wild counterparts. 

376. There was no significant difference among the offspring types in survival from seaward 

migration to return as sexually mature individuals. The lifetime reproductive success, adult-to-adult, of the 

farm salmon was 16% that of the wild salmon. All adult recaptures occurred in either the coastal fishery or 

the River Imsa; no fish were reported as straying into other rivers.  The mean age-at-maturity of hybrid fish 

(3.4 years) was less than that of native fish (4.2 years). 

377. A recent experiment in Canada, designed to study potential local adaptation to acidified rivers in 

Atlantic salmon populations and whether or not repeated interbreeding with farm salmon influenced this 

adaptation, found mixed evidence for reduced local adaptations by interbreeding (Fraser et al., 2008). Wild 

juveniles had higher survival in acidic water than farm salmon or wild-by-farm hybrids. In contrast, the 

backcrosses and second generation wild-by-farm hybrids performed equally well if not better than wild 

salmon in acidic water for the life stages studied. Follow-up studies on farm-wild hybridisation across 

divergent wild populations and multiple traits found evidence that hybrid fitness decreased with increasing 

divergence between the hybridising populations, but limitations to what extent changes in specific traits 

could be predicted  (Fraser et al., 2010). Skaala et al. (2012) planted farmed, hybrid (farmed x wild), and 

wild Atlantic salmon eggs in the River Guddalselva, western Norway, much in the same manner as the 

Burrishoole experiment reported above but detailed to performance at the family level. They found initially 

a high growth rate and high survival to smolts in farmed families, whereas later releases at higher standing 

density showed a reduced growth and lower survival of farmed than hybrid families, as well as lower in 

comparable hybrid than wild families. 

378. It has been observed that farmed females may destroy the redds of wild salmon in nature 

(Lura and Sægrov, 1991b). Thus, even when escaped farmed salmon have low spawning success, they can 

reduce the success of local wild fish.  

15.3.2. Effects on effective population size 

15.3.2.1. Supportive breeding 

379. As the survival of early life stages in hatcheries can be substantially higher than for comparable 

life stages in the wild, release programmes have the capacity to overwhelm a natural population with fish 

from a limited number of breeders. This may create a situation where the total population size increases 

while the total effective population size decreases, in particular if a proportionally large input of released 

fish is produced from a proportionally small broodstock population (Ryman and Laikre, 1991). However, if 
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supportive breeding results in a substantial and continuous increase of the census size over multiple 

generations, it is possible to increase also the effective population size of the supported population. 

15.3.2.2. Escaped farm salmon 

380. It has been estimated that the major strains of farm Atlantic salmon in Norway (which are also 

used in a number of other countries) have an average effective population size of about 80 individuals 

(Mork et al., 1999). If we ignore genetic differences between each of the four major strains, the total 

effective size of the major strains of farm salmon is roughly 320 individuals (even though their 

descendants count millions of individuals). The total effective size of the wild Atlantic salmon is not 

known, but it is probably on the order of 10
4
 or 10

5
 per generation if we assume that it is near the per-

spawning census size (Tufto and Hindar, 2003).  

381. A large number of fish escape from farms annually and make up a significant proportion of the 

spawners in wild salmon populations. Even though their reproductive success is smaller than that of wild 

fish, it has been estimated that the average one-way gene flow from farm into wild salmon in Norway is 

around 7-8% (Mork et al., 1999; Fleming et al., 2000), a more recent estimate from a demographic model 

being 4.5% (Hindar et al., 2006). Recent studies suggest that current introgression levels of farmed to wild 

salmon in Norway varies among populations from 0 to more than 40 % (Glover et al., 2013; Diserud et al., 

2016).  

382. Under a scenario of one-way migration, the total effective size of the farm plus wild salmon is 

simply Ne = 320 individuals. Tufto and Hindar (2003) have estimated that the time needed for this 

asymptotic effective size to be attained (for oneway gene flow at 7.5%), is of the order of 13.7 generations. 

With two-way gene flow, allowing 5% migration from the wild population back into the selected strains, 

the total effective size would increase to Ne = 880 individuals and the time to reach it decrease to 

8 generations (Tufto and Hindar, 2003). However, more details are needed in the model to realistically 

predict the long-term outcome of interactions between several farm strains and numerous wild populations. 

15.4 Genetic consequences – Interspecific 

383. Interbreeding between Atlantic salmon and brown trout is the most likely cause of interspecific 

genetic consequences. The rate of hybridisation between the two species appears to be increasing 

(Youngson et al., 1993; Hindar and Balstad, 1994), and this increase may be partly related to salmon 

culture. 

384. Interbreeding (i.e. a direct genetic effect) can be neglected when Atlantic salmon interact with 

other species than brown trout, for example when they are farmed in the Pacific. Indirect genetic effects, 

such as loss of genetic variability (reduced effective population size) or genetic change in response to new 

selective regimes (cf. Waples, 1991), must be considered if cultured Atlantic salmon establish feral 

populations outside the species’ range, and/or if they otherwise cause population declines of native species.  

385. Indirect genetic effects on other species can occur even if feral populations are not established. 

For example, if high numbers of fish escape at both freshwater and seawater life stages of Atlantic salmon, 

the released or escaped fish may be a key ecological factor (Soto et al., 2001). The likelihood of population 

establishment increases with the number of introductions, and with the time over which introductions take 

place.  

386. Dramatic effects of fish introductions are often associated with the concomitant introduction of a 

disease organism. The lack of testing of these organisms during fish introductions has made historical 

studies difficult to interpret, but this situation may change following developments in molecular 

epidemiology (Naylor et al., 2005). Deliberate releases of fish, and fish farming not operating in fully 
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enclosed systems, will always be associated with the possibility that disease organisms are transferred from 

farmed to wild fish (or from wild to farmed and back to wild at considerably higher densities). Historical 

studies suggest that transport of fish and/or fish eggs is an important vector for disease organisms, and that 

these organisms may have dramatic effects on the population size of native species (Johnsen and Jensen, 

1991; 1994; Bakke and Harris, 1998; Naylor et al., 2001).  
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ANNEX I.  SELECTED RESEARCH ON GENETICALLY ENGINEERED ATLANTIC SALMON 

 

Several research groups have conducted, or are currently conducting, research on Atlantic salmon that 

have been genetically engineered or genetically modified via the use of recombinant DNA technologies. 

These fish are sometimes referred to as “transgenic” if the DNA used to make the modification came from 

another fish or animal species. Most of the research to date has been conducted on an Atlantic salmon that 

has been genetically engineered for enhanced growth through the addition of a growth hormone gene from 

a chinook salmon. A partial listing of research published on this growth-enhanced transgenic salmon is 

presented below. Recent developments in targeted mutagenesis by the so-called CRISPR/Cas9 system, 

should be added to this list (e.g. Edvardsen et al., 2014 for Atlantic salmon). Additional information on this 

salmon is also available in risk assessment documents prepared by the United States Food and Drug 

Administration (USFDA, 2015) and Canadian Department of Fisheries and Oceans (DFO, 2013), see 

reference listings in Annex II.         
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